简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:

自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思

这就要做 : 语义相似度

接下来我们用Python大法来实现一个简单的自然语言处理

现在又要用到Python强大的三方库了

第一个是将中文字符串进行分词的库叫 jieba

pip install jieba

我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:

import jieba

key_word = "你叫什么名字"  # 定义一句话,基于这句话进行分词

cut_word = jieba.cut(key_word)  # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词

print(cut_word)  # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里

cut_word_list = list(cut_word)  # 如果不明白生成器的话,这里要记得把生成器对象做成列表

print(cut_word_list)  # ['你', '叫', '什么', '名字']

测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了

第二个是一个语言训练库叫 gensim

pip install gensim

这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底

import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities

l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了"

all_doc_list = []
for doc in l1:
    doc_list = [word for word in jieba.cut(doc)]
    all_doc_list.append(doc_list)

print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)]

# 制作语料库
dictionary = corpora.Dictionary(all_doc_list)  # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看

print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary))

corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了  1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus))

# 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec))

# 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec])

# 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index))

# 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]]

print("sim", sim, type(sim))

# 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc)

text = l1[cc[0][0]]

print(a,text)

jieba gensim 用法的更多相关文章

  1. python 全栈开发,Day133(玩具与玩具之间的对话,基于jieba gensim pypinyin实现的自然语言处理,打包apk)

    先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到 ...

  2. Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  3. 3,jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  4. jieba gensim 最好别分家之最简单的相似度实现

    简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...

  5. python jieba包用法总结

    # coding: utf-8 # ###jieba特性介绍 # 支持三种分词模式: # 精确模式,试图将句子最精确地切开,适合文本分析: # 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非 ...

  6. jieba gensim 相似度实现

    博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html 简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字 ...

  7. $好玩的分词——python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和 ...

  8. 文本相似度分析(基于jieba和gensim)

    基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...

  9. jieba中文分词的.NET版本:jieba.NET

    简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以 ...

随机推荐

  1. monkey如何获取app包名

    别人学习网址:http://www.51testing.com/html/58/15092658-2984032.html 使用aapt    aapt是sdk自带的一个工具,在sdk\builds- ...

  2. Docker 制作自己的镜像

    1. 下载tomcat镜像 docker pull hub.c.163.com/library/tomcat:latest 2. 创建Dockfile vi Dockerfile from hub.c ...

  3. Hbase Shell命令详解+API操作

    HBase Shell 操作 3.1 基本操作1.进入 HBase 客户端命令行,在hbase-2.1.3目录下 bin/hbase shell 2.查看帮助命令 hbase(main):001:0& ...

  4. kafka_2.11-0.8.2.1生产者producer的Java实现

    转载自:http://blog.csdn.net/ch717828/article/details/50818261 1. 开启Kafka Consumer 首先选择集群的一台机器,打开kafka c ...

  5. 【java】浅谈while 和do-while

    while语法格式:while(布尔表达式){//语句}先判断布尔表达式,如果为true就会执行循环体中的语句,然后再判断布尔表达式,一直到布尔表达式为false,然后循环结束.通常用算术运算符(++ ...

  6. Vivado使用技巧(1)

    Vivado使用技巧 (1) 1. 2.复位准则: 3. 4. 5. 6. 7. 8.

  7. Ubuntu 安装以及web服务器配置

    1.安装实在没必要说,连系统都装不了,干脆下岗算了 2.Apache2 安装 //安装 sudo apt-get install apache2 Apache安装完成后,默认的网站根目录是" ...

  8. Java多线程编程——并发编程原理(分布式环境中并发问题)

    在分布式环境中,处理并发问题就没办法通过操作系统和JVM的工具来解决,那么在分布式环境中,可以采取一下策略和方式来处理: 避免并发 时间戳 串行化 数据库 行锁 统一触发途径 避免并发 在分布式环境中 ...

  9. 【转】non-blocking REST services with Spring MVC

    堵塞Controller Controller为单例: 非线程安全: 堵塞方式: 1个request对应1个处理Thread: @RestController public class Process ...

  10. bzoj2856: [ceoi2012]Printed Circuit Board

    Description 给出一个N个顶点的简单多边形,对于每个顶点,假如它和原点连成的线段只在这个顶点处和多边形相交,就称为满足要求的顶点.你的任务是输出所有满足要求的顶点编号. Input 第一行一 ...