【概率论】3-8:随机变量函数(Functions of a Random Variable)
title: 【概率论】3-8:随机变量函数(Functions of a Random Variable)
categories:
- Mathematic
- Probability
keywords: - The Probability Integral Transformation
- 概率积分变换
- Simulation
- 仿真
- Pseudo-Random Numbers
- 伪随机数
- General Function
toc: true
date: 2018-03-16 09:49:24

Abstract: 本文介绍通过函数这个工具,来研究随机变量
Keywords: The Probability Integral Transformation,Simulation,Pseudo-Random Numbers,General Function
开篇废话
我们到目前为止对概率的研究经过了试验结果,事件,随机变量大概这三个过程,其实每个过程都是更高层的抽象,比如,对于直观的事实,实验结果,我们通过一种函数,或者称为一种收集,将结果抽象成了事件,而对事件研究了一段时间后又将事件通过函数(随机变量)映射到了实数域,整个过程,更加抽象,更加复杂,但是计算和模拟现实中的试验结果变得更加容易更加准确。
对于实数的研究,函数是绕不开的话题,而函数的微分积分等又是现代科学的基础,所以本文简要的介绍下随机变量的函数。
问题的描述变成了当我们已知一个随机变量 XXX 具有某个p.f. 或者 p.d.f 那么随机变量 Y=f(x)Y=f(x)Y=f(x) 分布是什么。
Random Variable with a Discrete Distribution
先看一个例子:
离散随机变量 XXX 在 [1,…,9][1,\dots ,9][1,…,9] 有一个均匀分布,我们关系的是随机变量距离区间中心5的距离Y的分布情况。
这时候 YYY 的定义的数学化表示是: Y=∣X−5∣Y=|X-5|Y=∣X−5∣ 其分布函数不太好写,但是可以列举出来:
Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=29Pr(Y=2)=Pr(X∈3,7)=29Pr(Y=3)=Pr(X∈2,8)=29Pr(Y=4)=Pr(X∈1,9)=29Pr(Y=0)=Pr(X∈5)=19
Y\in \{0,1,2,3,4\}\\
Pr(Y=1)=Pr(X\in {4,6})=\frac{2}{9}\\
Pr(Y=2)=Pr(X\in {3,7})=\frac{2}{9}\\
Pr(Y=3)=Pr(X\in {2,8})=\frac{2}{9}\\
Pr(Y=4)=Pr(X\in {1,9})=\frac{2}{9}\\
Pr(Y=0)=Pr(X\in {5})=\frac{1}{9}\\
Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=92Pr(Y=2)=Pr(X∈3,7)=92Pr(Y=3)=Pr(X∈2,8)=92Pr(Y=4)=Pr(X∈1,9)=92Pr(Y=0)=Pr(X∈5)=91
这就是一个最简单的例子,关于离散随机变量的函数的分布问题。
Theorem Function of a Discrete Random Variable. Let XXX have a discrete distribution with p.f. fff and let Y=r(X)Y=r(X)Y=r(X) for some function of rrr defined on the set of possible values of XXX For each possible value y of YYY the p.f. ggg of YYY is
g(y)=Pr(Y=y)=Pr[r(X)=y]=∑x;r(x)=yf(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=\sum_{x;r(x)=y}f(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=x;r(x)=y∑f(x)
解读下上面的公式,其实公式写的很清楚,当我们知道函数r了以后,满足 r(X)=yr(X)=yr(X)=y 的所有X对应的概率最后组合成了Y,所以要进行求和,其实这一步跟从试验结果得到事件的过程是一样的。但是下面对于连续分布来说,就非常不一样了。
以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-3-8-Fuctions-of-a-Random-Variable转载请标明出处
【概率论】3-8:随机变量函数(Functions of a Random Variable)的更多相关文章
- 【概率论】3-9:多随机变量函数(Functions of Two or More Random Variables)
title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probab ...
- 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)
title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...
- 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)
title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part I) categories: - Mathematic - Prob ...
- asp.net MVC helper 和自定义函数@functions小结
asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...
- asp.net MVC 自定义@helper 和自定义函数@functions小结
asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...
- 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的分布
在讨论连续型随机变量函数的分布时,我们从一般的情况中(讨论正态分布的文章中提及),能够得到简化版模型. 回忆利用分布函数和概率密度的关系求解随机变量函数分布的过程,有Y=g(x),如果g(x)是严格单 ...
- 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的期望
在关于离散型随机变量函数的期望的讨论中,我们很容易就得到了如下的等式: 那么推广到连续型随机变量,是否也存在类似的规律呢? 即对于连续型随机变量函数的期望,有: 这里给出一个局部的证明过程,完整的证明 ...
- 【Swift】 - 函数(Functions)总结 - 比较 与 C# 的异同
1.0 函数的定义与调用( Defining and Calling Functions ) 习惯了C#了语法,看到下面的这样定义输入参数实在感到非常别扭,func 有点 Javascript的感觉, ...
- [转]asp.net MVC helper 和自定义函数@functions小结
本文转自:http://www.cnblogs.com/jiagoushi/p/3904995.html asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的 ...
随机推荐
- vuex 理解
为什么要用vuex?页面由多个视图组成,用户操作会引视图的状态变化. 多个视图依赖于同一状态(例如:菜单导航) 来自不同视图的行为需要变更同一状态(例如:评论弹幕) vuex 的作用 为vue.js开 ...
- java中单双引号的区别
单引号: 单引号包括的是单个字符,表示的是char类型.例如: char a='1' 双引号: 双引号可以包括0个或者多个字符,表示的是String类型. 例如: String s="ab ...
- js文件分段上传
前端代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/T ...
- django静态文件配置和使用
一.首先需要了解的知识点是: 1.出于对效率和安全的考虑,django管理静态文件的功能仅限于在开发阶段的debug模式下使用,且需要在配置文件的INSTALLED_APPS中加入django.con ...
- R|批量循环处理同一格式文件-csv,txt,excel
本文首发于“生信补给站”微信公众号,https://mp.weixin.qq.com/s/8IfMrSr9xc8_1Y2_9Ne6hg 在一个文件夹下有很多字段一致,格式统一的数据文件(csv,txt ...
- hdu 4501三重包问题
好好理解一下背包问题 从01包入手 内层的循环 是为了以后求解记录数据 因为只有一个取舍问题 所以只需要一层循环就可以 这里有三个背包 钱 积分 以及免费物品 那么 就需要三重循环 #include& ...
- (五)CXF之添加拦截器
一.需求分析 webService中的拦截器类似于servlet的Filter过滤器.一般用于调用服务前后先调用拦截器的方法. 二.案例 本章案例是基于上一章节的基础上添加拦截器的 2.1 服务端添加 ...
- WebSocket协议探究(二)
一 复习和目标 1 复习 协议概述: WebSocket内置消息定界并且全双工通信 WebSocket使用HTTP进行协议协商,协商成功使用TCP连接进行传输数据 WebScoket数据格式支持二进制 ...
- HTTP协议探究(六):H2帧详解和HTTP优化
一 复习与目标 1 复习 HTTP1.1存在的问题 HTTP2.0要兼容HTTP1.1 HTTP2.0的重要概念 分帧层 二进制:流 消息 帧 流的状态.优先级和并发 流量控制 服务器推送 首部压缩 ...
- JDBC 学习复习6 学习与编写数据库连接池
之前的工具类DBUtil暴露的问题 用户每次请求都需要向数据库获得链接,而数据库创建连接通常需要消耗相对较大的资源,创建时间也较长.假设网站一天10万访问量,数据库服务器就需要创建10万次连接,极大的 ...