[CEOI1999]Sightseeing trip

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7

1 4 1

1 3 300

3 1 10

1 2 16

2 3 100

2 5 15

5 3 20

Sample Output

1 3 5 2

无向图的最小环问题。

当外层循环\(k\)刚开始时,\(dis[i][j]\)保存着经过编号不超过\(k-1\)的节点从\(i\)到\(j\)的最短路长度。

于是,\(min(dis[i][j]+a[j][k]+a[k][i])\)(一定注意是a[j][k]+a[k][i],因为dis[i][j]表示\(i\)走到\(j\)的距离,所以要从\(j\)走到\(k\),从\(k\)走到\(i\))

表示由编号不超过\(k\)的节点构成,经过节点\(k\)的环。对于\(\forall\) \(k\) \(\in\) \([1,n]\)都取最小值,即可得到整张图的最小环。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=310;
int n,m,ans=0x3f3f3f3f,x,y,z,cnt;
int a[N][N],dis[N][N],path[N][N],qwe[N];
void print(int x,int y)
{
if(!path[x][y]) return;
print(x,path[x][y]);
qwe[++cnt]=path[x][y];
print(path[x][y],y);
}
void floyed()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
{
if((long long)dis[i][j]+a[j][k]+a[k][i]<ans)
{
ans=dis[i][j]+a[j][k]+a[k][i];
cnt=0;qwe[++cnt]=i;
print(i,j);
qwe[++cnt]=j;qwe[++cnt]=k;
}
}
for(int i=1;i<=n;i++)
{if(i==k) continue;
for(int j=1;j<=n;j++)
{if(j==k||j==i) continue;
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
}
}
}
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=min(a[x][y],z);
}
memcpy(dis,a,sizeof(a));
floyed();
if(ans==0x3f3f3f3f) printf("No solution.");
else for(int i=1;i<=cnt;i++) printf("%d ",qwe[i]);
}

[CEOI1999]Sightseeing trip(Floyed)的更多相关文章

  1. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  2. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  3. POJ 1734.Sightseeing trip (Floyd 最小环)

    Floyd 最小环模板题 code /* floyd最小环,记录路径,时间复杂度O(n^3) 不能处理负环 */ #include <iostream> #include <cstr ...

  4. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  5. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  6. HDU 3018 Ant Trip (欧拉回路)

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. cf B. Mishka and trip (数学)

    题意   Mishka想要去一个国家旅行,这个国家共有个城市,城市通过道路形成一个环,即第i个城市和第个城市之间有一条道路,此外城市和之间有一条道路.这个城市中有个首中心城市,中心城市与每个城市(除了 ...

  8. [POJ 1637] Sightseeing tour(网络流)

    题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...

  9. 闭包传递(floyed)

    题目链接: https://cn.vjudge.net/contest/66569#problem/H 题目大意: n代表母牛的个数,m代表给定的信息的组数.每一组数包括a,b. 代表b崇拜a(突然发 ...

随机推荐

  1. Linux服务知识点总结

    一.firewalld防火墙 1.firewalld简述 firewalld:防火墙,其实就是一个隔离工具:工作于主机或者网络的边缘.对于进出本主机或者网络的报文根据事先定义好的网络规则做匹配检测,对 ...

  2. Python os 使用

    python os 使用 1. 获取文件所在路径 import os os.path.dirname(__file__)  获取当前文件的所在路径 print (os.path.dirname(os. ...

  3. sops的配置过程

    0.demo关键 1.关键信息,不能用5.1.6版本的,还有很多坑 蓝鲸版本: 标准运维:bk_sops_V3.1.39.tar 2.简单理解: 标准运维实际上调用作业平台job的API去执行 要跑通 ...

  4. spring-boot和jboss应用添加pinpiont方式

    一.jboss应用 添加方式,添加方式,在run.conf文件配置pinpoint相关信息,如下: if [ "x$JAVA_OPTS" = "x" ]; th ...

  5. 2019年 Java 课程总结

    Java学习个人感悟: 1.我感觉学习java应该是循环渐进,有始有终,勤奋细心,脚踏实地. java是一门有着阶梯性的一们语言,如果要学习它.我觉得最好还是按照java的学习体系,先学习什么,在学习 ...

  6. PYTHON 100days学习笔记007-1:python数据类型补充(1)

    目录 day007:python数据类型补充(1) 1.数字Number 1.1 Python 数字类型转换 1.2 Python 数字运算 1.3 数学函数 1.4 随机数函数 1.5 三角函数 1 ...

  7. 批量导出docker images 的一个简单方法

    docker images |cut -c - |xargs docker save -o iamges.tar 主要 最大的长度不能超过 18 超过了就得改一下 -c 后面的数据长度 最终效果为: ...

  8. PAT B1011 A+B 和 C (15)

    AC代码 #include <cstdio> int main() { int T, tcase = 1; scanf("%d", &T); for(int i ...

  9. 剑指offer9:青蛙变态跳台阶,1,2,3……,n。

    1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2. 思路和方法 每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后 ...

  10. 使用rpm安装mysql 5.7和依赖们

    在安装mysql-server之前,需要安装相应的依赖,当前系统环境是CentOS7,需要安装3个依赖,mysql-community-common,mysql-community-libs,mysq ...