[CEOI1999]Sightseeing trip(Floyed)
[CEOI1999]Sightseeing trip
Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.
In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output
1 3 5 2
无向图的最小环问题。
当外层循环\(k\)刚开始时,\(dis[i][j]\)保存着经过编号不超过\(k-1\)的节点从\(i\)到\(j\)的最短路长度。
于是,\(min(dis[i][j]+a[j][k]+a[k][i])\)(一定注意是a[j][k]+a[k][i],因为dis[i][j]表示\(i\)走到\(j\)的距离,所以要从\(j\)走到\(k\),从\(k\)走到\(i\))
表示由编号不超过\(k\)的节点构成,经过节点\(k\)的环。对于\(\forall\) \(k\) \(\in\) \([1,n]\)都取最小值,即可得到整张图的最小环。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=310;
int n,m,ans=0x3f3f3f3f,x,y,z,cnt;
int a[N][N],dis[N][N],path[N][N],qwe[N];
void print(int x,int y)
{
if(!path[x][y]) return;
print(x,path[x][y]);
qwe[++cnt]=path[x][y];
print(path[x][y],y);
}
void floyed()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
{
if((long long)dis[i][j]+a[j][k]+a[k][i]<ans)
{
ans=dis[i][j]+a[j][k]+a[k][i];
cnt=0;qwe[++cnt]=i;
print(i,j);
qwe[++cnt]=j;qwe[++cnt]=k;
}
}
for(int i=1;i<=n;i++)
{if(i==k) continue;
for(int j=1;j<=n;j++)
{if(j==k||j==i) continue;
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
}
}
}
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=min(a[x][y],z);
}
memcpy(dis,a,sizeof(a));
floyed();
if(ans==0x3f3f3f3f) printf("No solution.");
else for(int i=1;i<=cnt;i++) printf("%d ",qwe[i]);
}
[CEOI1999]Sightseeing trip(Floyed)的更多相关文章
- URAL 1004 Sightseeing Trip(最小环)
Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- POJ 1734.Sightseeing trip (Floyd 最小环)
Floyd 最小环模板题 code /* floyd最小环,记录路径,时间复杂度O(n^3) 不能处理负环 */ #include <iostream> #include <cstr ...
- URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)
https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- HDU 3018 Ant Trip (欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- cf B. Mishka and trip (数学)
题意 Mishka想要去一个国家旅行,这个国家共有个城市,城市通过道路形成一个环,即第i个城市和第个城市之间有一条道路,此外城市和之间有一条道路.这个城市中有个首中心城市,中心城市与每个城市(除了 ...
- [POJ 1637] Sightseeing tour(网络流)
题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...
- 闭包传递(floyed)
题目链接: https://cn.vjudge.net/contest/66569#problem/H 题目大意: n代表母牛的个数,m代表给定的信息的组数.每一组数包括a,b. 代表b崇拜a(突然发 ...
随机推荐
- python基础知识(函数2)
返回值 return return[value] 多个值用,逗号分开,没有返回值,会返回none值,函数不给指定返回值也会返回none值 def functionname(p1,p2,p3): re ...
- window 安装指定的node版本
有时候不同的项目需要不同的node版本,window切换node版本命令很不管用,甚至需要卸载后重新装,同事分享了一下他的做法,很便利. 1.打开node官网 https://nodejs.org/e ...
- C# WindowService 动态修改服务名
serviceInstaller1中可以设置服务名,描述等 在实际情况中,我们可能需要将Service多开来达到我们的目的,但是安装两次以上会有错误提示,因为服务名已经重复了,这个时候,我们需要动态改 ...
- pandas中截取一列字符串中每行字符串的一部分
import pandas as pd df = pd.DataFrame([[',1], [',2], [',3], [',4], [',5], [',6]],columns=['str','num ...
- 论文阅读 | TextBugger: Generating Adversarial Text Against Real-world Applications
NDSS https://arxiv.org/abs/1812.05271 摘要中的创新点确实是对抗攻击中值得考虑的点: 1. effective 2. evasive recognized b ...
- pynput模块—键盘鼠标操作和监听
pynput.mouse:包含控制和监控鼠标或者触摸板的类. pynput.keyboard:包含控制和监控键盘的类. 上面提到的子包都已被引入到pynput库中.要使用上面的子包,从pynput中引 ...
- PTA(Advanced Level)1083.List Grades
Given a list of N student records with name, ID and grade. You are supposed to sort the records with ...
- python的文件读写操作
文件读写 本文转自廖雪峰老师的教程https://www.liaoxuefeng.com/wiki/1016959663602400/1017607179232640 读写文件是最常见的IO操作.Py ...
- exclipe怎么设置编码为UTF-8
如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文输出,则最好使 Java文件使用UTF-8编码.然而,Eclipse工作空间(workspace)的缺省字符编码是操作系统缺省的编码,简 ...
- C#面向对象10 继承
1.继承: **** 我们可能会在一些类中,写一些重复的成员.我们可以将这些重复的成员,单独的封装到一个类中,作为这些类的父类. Student,Teacher,Driver ----子类 派生类 ...