[CEOI1999]Sightseeing trip(Floyed)
[CEOI1999]Sightseeing trip
Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.
In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output
1 3 5 2
无向图的最小环问题。
当外层循环\(k\)刚开始时,\(dis[i][j]\)保存着经过编号不超过\(k-1\)的节点从\(i\)到\(j\)的最短路长度。
于是,\(min(dis[i][j]+a[j][k]+a[k][i])\)(一定注意是a[j][k]+a[k][i],因为dis[i][j]表示\(i\)走到\(j\)的距离,所以要从\(j\)走到\(k\),从\(k\)走到\(i\))
表示由编号不超过\(k\)的节点构成,经过节点\(k\)的环。对于\(\forall\) \(k\) \(\in\) \([1,n]\)都取最小值,即可得到整张图的最小环。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=310;
int n,m,ans=0x3f3f3f3f,x,y,z,cnt;
int a[N][N],dis[N][N],path[N][N],qwe[N];
void print(int x,int y)
{
if(!path[x][y]) return;
print(x,path[x][y]);
qwe[++cnt]=path[x][y];
print(path[x][y],y);
}
void floyed()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
{
if((long long)dis[i][j]+a[j][k]+a[k][i]<ans)
{
ans=dis[i][j]+a[j][k]+a[k][i];
cnt=0;qwe[++cnt]=i;
print(i,j);
qwe[++cnt]=j;qwe[++cnt]=k;
}
}
for(int i=1;i<=n;i++)
{if(i==k) continue;
for(int j=1;j<=n;j++)
{if(j==k||j==i) continue;
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
}
}
}
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=min(a[x][y],z);
}
memcpy(dis,a,sizeof(a));
floyed();
if(ans==0x3f3f3f3f) printf("No solution.");
else for(int i=1;i<=cnt;i++) printf("%d ",qwe[i]);
}
[CEOI1999]Sightseeing trip(Floyed)的更多相关文章
- URAL 1004 Sightseeing Trip(最小环)
Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- POJ 1734.Sightseeing trip (Floyd 最小环)
Floyd 最小环模板题 code /* floyd最小环,记录路径,时间复杂度O(n^3) 不能处理负环 */ #include <iostream> #include <cstr ...
- URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)
https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- HDU 3018 Ant Trip (欧拉回路)
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- cf B. Mishka and trip (数学)
题意 Mishka想要去一个国家旅行,这个国家共有个城市,城市通过道路形成一个环,即第i个城市和第个城市之间有一条道路,此外城市和之间有一条道路.这个城市中有个首中心城市,中心城市与每个城市(除了 ...
- [POJ 1637] Sightseeing tour(网络流)
题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...
- 闭包传递(floyed)
题目链接: https://cn.vjudge.net/contest/66569#problem/H 题目大意: n代表母牛的个数,m代表给定的信息的组数.每一组数包括a,b. 代表b崇拜a(突然发 ...
随机推荐
- iOS UITextField限制输入字数
关于iOS的文本框有时需要限制字数,如手机号,在UITextField的代理单纯写一个判断,在字数超过限制时,这时再想删除就删除不掉,可以在代理这样写,就解决 - (BOOL)textField:(U ...
- JAVA是否适合非科班者自学入行?石油工程专业从培训到JAVA入门自学亲身经历
如今的我已经过了三十而立的年纪,虽然在三十岁我没有立下任何事业,相反,还在茫茫苦海中挣扎. 但是我并不是没有收获.当然,曾经在我拥有大好青春年华的时候选择了迷茫,以至于当我有所明悟的时候,却已经错过了 ...
- OpenCV_复制一个或多个ROI图像区域
在对图像进行处理过程中,我们经常需要对图像的某个或多个感兴趣区域进行处理.在OpenCV中我们能够非常方便地获取指定ROI区域的子图像.下面这段代码就演示了怎样获取指定单个ROI或多个ROI图像区域. ...
- vim 显示行号 查找的命令简单总结
1. linux vim 进行查找的方法 在command 模式下面 输入 /what-you-search 就可以搜索 注意 n 是向下查找 N 是向上查找 不想搜索了 输入 :set nol 就 ...
- *【Python】【demo实验31】【练习实例】【使用turtle画小猪佩奇】
如下图小猪佩奇: 要求使用turtle画小猪佩奇: 源码: # encoding=utf-8 # -*- coding: UTF-8 -*- # 使用turtle画小猪佩奇 from turtle i ...
- Response.write()弹出窗口的问题!
今天偶然发现在.NET中使用Javascript语句弹出窗口时发现一个小小的问题! 例子如下: 1: Response.Write ("<script languge=javascri ...
- oracle——学习之路(oracle内置函数)
oracle与很多内置函数,主要分为单行函数与集合函数. 首先要提一下dual表,它oracle的一个表,没有什么实质的东西,不能删除它,否则会造成Oracle无法启动等问题,他有很大用处,可以利用它 ...
- package[golang]学习笔记之runtime
*获取当前函数名称,文件名称,行号等信息.通过这个函数配合Println函数可以方便的获取错误信息的位置 var n int //n==0 当前 //n==1 调用函数 //n==2 调用函数的调用函 ...
- JavaScript的几种循环方式
JavaScript提供了许多通过LOOPS迭代的方法.本教程解释了现代JAVASCRIPT中各种各样的循环可能性 目录: for forEach do...while while for...in ...
- @RequestBody, @ResponseBody 注解理解
@RequestBody, @ResponseBody 注解理解 自己以前没怎么留意过,来实习后公司采用前后端分离的开发方式,前后端拿到的注释都是 json 格式的,这时候 @RequestBody, ...