ARP (Address Resolution Protocol,地址解析协议),是一种用于将 IP 地址转换为物理地址(MAC地址)的协议。它在 TCP/IP 协议栈中处于链路层,为了在局域网中能够正确传输数据包而设计,由协议数据单元和对应的操作命令组成。ARP 既可以由操作系统处理,也可以由网卡处理。

该协议的作用是通过一个局域网上的互联网协议(IP)地址来查询对应的物理硬件地址,如数据包发送到路由器时,ARP 协议将使用嵌入在数据包中的目的 IP 地址查找对应的物理地址,路由器根据获取的 MAC 地址转发数据包到下一个网络。

协议工作过程如下:

  • 主机A通过查找其ARP缓存表,比对目标的IP地址是否存在于ARP缓存表中。
  • 如果目标机器的IP地址不存在于本地ARP缓存表中,则主机A需要进行ARP请求过程,它广播一个ARP请求。
  • 当其他主机收到这个请求时,它会比对主机A设置的这个目标IP地址和自己的IP地址是否一致。
  • 如果一致的话,说明被查询的这个IP地址正是自己的IP地址,此时这个主机就会直接向主机A发送ARP响应数据包。
  • 主机A在获得了目标主机的MAC地址信息之后,会把这个MAC地址信息存储到自己的ARP缓存表中,以便以后再次使用。

ARP主机探测原理是通过发送 ARP 查询报文,来获取目标主机的 MAC 地址,进而获取目标主机的 IP 地址。

主机探测的具体实现步骤如下:

  • 构造一个ARP查询报文,报文中的目标IP地址为需要探测的主机IP地址,源IP地址为探测主机的IP地址,源MAC地址为探测主机网卡的MAC地址。
  • 发送ARP查询报文。如果目标主机在线,且相应功能正常,它将返回一个ARP响应报文,其中包含目标主机的MAC地址。
  • 接收到ARP响应报文之后,分析报文,从中提取出目标主机的MAC地址和IP地址等信息。

Windows系统下,我们可以调用SendARP()函数实现ARP探测,该函数用于发送ARP请求到指定的 IP 地址,以获取其 MAC 地址。该函数参数传入目标 IP 地址时能够返回对应 MAC 地址。

SendARP 函数原型如下:

DWORD SendARP(
IN IPAddr DestIP, // 目标 IP 地址
IN IPAddr SrcIP, // 源 IP 地址(可以为 0)
OUT PULONG pMacAddr, // 接收目标 MAC 地址
IN OUT PULONG PhyAddrLen // 接收目标 MAC 地址的缓冲区大小,单位为字节
);

该函数的第一个参数为目标IP地址,第二个参数为本地主机IP地址(可以填 0),第三个参数为接收返回的目标 MAC 地址的指针,第四个参数为指向缓冲区大小的指针。

当调用 SendARP() 函数时,如果目标 IP 地址是在同一物理网络中,则返回目标 IP 地址对应的 MAC 地址,并且函数返回值为 NO_ERROR。如果目标 IP 地址无效,或者无法获得对应的 MAC 地址,则函数返回值为错误代码,应该根据错误代码来进行处理。

如下代码实现了扫描局域网中指定ARP主机地址的功能。代码主要使用了SendARP()函数来查询目标主机的MAC地址,并将结果输出。具体实现步骤如下:

#include <stdio.h>
#include <winsock2.h>
#include <IPHlpApi.h> #pragma comment (lib,"ws2_32.lib")
#pragma comment (lib,"iphlpapi.lib") // 扫描局域网中指定ARP主机地址
void ArpScan(char *LocalIP,char *TargetIP)
{
ULONG localIP = inet_addr(LocalIP);
ULONG targetIP = inet_addr(TargetIP); ULONG macBuf[2] = { 0 };
ULONG macLen = 6; DWORD retValue = SendARP(targetIP, localIP, macBuf, &macLen); unsigned char *mac = (unsigned char*)macBuf;
printf("IP: %-12s --> MAC: ", TargetIP);
for (int x = 0; x < macLen; x++)
{
printf("%.2X", mac[x]);
if (x != macLen - 1)
printf("-");
}
printf("\n");
} int main(int argc,char * argv[])
{
for (int x = 1; x < 100; x++)
{
char target[32] = { 0 };
sprintf(target, "192.168.1.%d", x);
ArpScan("192.168.1.2", target);
}
system("pause");
return 0;
}

根据端口探测中所使用的方法,实现多线程也很容易,如下代码实现了使用多线程方式扫描局域网内存活的主机。代码中使用 SendARP() 函数来探测目标主机是否存活,并使用多线程方式来加快扫描速度,同时使用临界区来控制多线程条件下的输出效果。

具体实现过程如下:

  • 定义 checkActive() 函数,该函数使用 SendARP() 函数来判断目标主机是否存活。如果目标主机存活,则在屏幕上输出其 IPMAC 地址。

  • 定义 threadProc() 函数来作为多线程的回调函数。该函数接收一台主机的 IP 地址,并调用 checkActive() 函数来探测该主机是否在线。

  • main() 函数中,定义开始和结束的 IP 地址,并使用 for 循环遍历这个 IP 地址段。在循环中,使用 CreateThread() 函数来创建多个线程,每个线程负责探测其中一台主机是否在线。

  • checkActive() 函数中,多线程会涉及到在界面上的输出,为了控制多线程在输出上的次序,使用了 EnterCriticalSection()LeaveCriticalSection() 函数来表示临界区,只有进入临界区的线程能够打印输出,其他线程需要等待进入临界区。

#include <stdio.h>
#include <winsock2.h>
#include <iphlpapi.h> #pragma comment(lib,"ws2_32.lib")
#pragma comment(lib,"iphlpapi.lib") // 临界区,控制多线程打印顺序
CRITICAL_SECTION g_critical; bool checkActive(in_addr ip)
{
ULONG dstMac[2] = { 0 };
memset(dstMac, 0xff, sizeof(dstMac));
ULONG size = 6;
HRESULT re = SendARP(ip.S_un.S_addr, 0, dstMac, &size); if (re == NO_ERROR && size == 6)
{
// 线程进入临界区,其他线程不能再进入,控制多线程在界面上的打印顺序
EnterCriticalSection(&g_critical); printf("[+] 发现存活主机: %-15s ---> MAC :", inet_ntoa(ip));
BYTE *bPhysAddr = (BYTE *)& dstMac;
for (int i = 0; i < (int)size; i++)
{
// 如果是mac地址的最后一段,就输出换行
if (i == (size - 1))
{
printf("%.2X\n", (int)bPhysAddr[i]);
}
else
{
// 否则没有到最后一段,依旧输出,但不换行
printf("%.2X-", (int)bPhysAddr[i]);
}
} // 线程离开临界区,其他线程能够继续进入
LeaveCriticalSection(&g_critical);
return true;
}
else
{
return false;
}
} // 启动多线程
DWORD WINAPI threadProc(LPVOID lpThreadParameter)
{
in_addr ip;
ip.S_un.S_addr = (ULONG)lpThreadParameter;
checkActive(ip);
return 0;
} int main(int argc, char *argv[])
{
in_addr ip_start, ip_end; // 定义开始IP
ip_start.S_un.S_addr = inet_addr("192.168.9.1"); // 定义结束IP
ip_end.S_un.S_addr = inet_addr("192.168.9.254"); // 循环探测主机 //初始临界区
InitializeCriticalSection(&g_critical); for (in_addr ip = ip_start; ip.S_un.S_addr < ip_end.S_un.S_addr; ip.S_un.S_un_b.s_b4++)
{
printf("探测: %s \r", inet_ntoa(ip));
CreateThread(NULL, 0, threadProc, (LPVOID)ip.S_un.S_addr, 0, 0);
} system("pause");
return 0;
}

编译并运行上述代码片段,则会探测192.168.9.1192.168.9.254网段内存活的主机,并输出该主机的MAC信息,输出效果图如下所示;

本文作者: 王瑞

本文链接: https://www.lyshark.com/post/57dc46.html

版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

16.2 ARP 主机探测技术的更多相关文章

  1. Nmap的活跃主机探测常见方法

    最近由于工作需求,开始对Nmap进行一点研究,主要是Nmap对于主机活跃性的探测,也就是存活主机检测的领域. Nmap主机探测方法一:同网段优先使用arp探测: 当启动Namp主机活跃扫描时候,Nma ...

  2. 后渗透阶段之基于MSF的内网主机探测

    当我们通过代理可以进入某内网,需要对内网主机的服务进行探测.我们就可以使用MSF里面的内网主机探测模块了. 在这之前,先修改 /etc/proxychains.conf ,加入我们的代理. 然后 pr ...

  3. python scapy的用法之ARP主机扫描和ARP欺骗

    python scapy的用法之ARP主机扫描和ARP欺骗 目录: 1.scapy介绍 2.安装scapy 3.scapy常用 4.ARP主机扫描 5.ARP欺骗 一.scapy介绍 scapy是一个 ...

  4. python nmap模块使用进行主机探测(ICMP)

    终于审核通过了......第一次用博客,想记录自己的学习情况,分享知识. 废话不多说,第一篇blog,大牛请轻喷. 资产清点首先需要进行主机探测,将存活主机统计下来再进行进一步的指纹识别及端口探测.若 ...

  5. kali主机探测命令与工具集

    实验目的 熟悉ping.arping.fping.hping3.nbtscan.nping.p0f.xprobe2工具对目标主机的探测方法. 实验原理 目标识别工具发送特殊构造的数据包,根据返回的应答 ...

  6. Kali linux 2016.2(Rolling)中metasploit的主机探测

    不多说,直接上干货! 1.活跃主机扫描 root@kali:~# ping -c 202.193.58.13 PING () bytes of data. bytes ttl= time=25.4 m ...

  7. centos7下安装docker(16.1docker跨主机存储--Rex-Ray)

    一.Rex-Ray以standalone进程的方式运行在docker主机上,安装方法很简单:在docker1和docker2上运行如下命令: curl -sSL https://dl.bintray. ...

  8. centos7下安装docker(16.docker跨主机存储)

    从业务数据的角度看,容器可以分为两类:无状态(stateless)容器和有状态(stateful)容器. 无状态:是指容器在运行的过程中不需要保存数据,每次访问的结果不依赖上一次的访问,比如提供静态页 ...

  9. kali 2.0 linux中的Nmap的主机探测

    不多说,直接上干货! 如果是第一次接触Nmap,推荐在MSF终端中输入不加任何参数的Nmap命令,以查看其使用方法. 更多,其实, msf > nmap -h [*] exec: nmap -h ...

  10. ICMP主机探测过程

    #1from scapy.all import * from random import randint from optparse import OptionParser #2 对用户输入的参数进行 ...

随机推荐

  1. 一个跨平台的`ChatGPT`悬浮窗工具

    一个跨平台的ChatGPT悬浮窗工具 使用avalonia实现的ChatGPT的工具,设计成悬浮窗,并且支持插件. 如何实现悬浮窗? 在使用avalonia实现悬浮窗也是非常的简单的. 实现我们需要将 ...

  2. Hexo博客Next主题站内搜索模块相关,解决搜索无效、一直loading的问题

    站内搜索配置 设置方法: 首先安装hexo-generator-searchdb插件 npm install hexo-generator-searchdb --save 编辑博客根目录下的博客本地目 ...

  3. JSGRID loaddata显示超级多空行

    这个逼问题困扰了我两天了 作为一个主后端的程序员 初体验前端技术栈真的麻之又麻 以防万一 请先确认 是不是和我一个情况 如果是 请往下看 首先 我们需要念一段咒语 json是json string是s ...

  4. tensorflow神经网络归一化方法

    参考https://blog.csdn.net/chary8088/article/details/81542879

  5. 聊聊又拍云存储 S3 协议的使用

    近期,有细心的同学发现,在又拍云控制台中的云存储产品中增加了针对 S3 协议标准的兼容支持,授权用户通过 S3 协议标准对存储空间的数据进行读写操作.此配置操作之前是由人工协助的方式提供给用户使用的, ...

  6. 【问题解决】docker版本v23.0后,构建Dockerfile中FROM私库镜像报错构建失败

    问题情况 Docker版本在v23.0以后,只要Dockerfile中FROM的私库镜像不存在本地,就会报错: # 我本地是v24.0.2版本Docker [root@localhost ipd]# ...

  7. 2021-7-11 Vue的计算属性和侦听器

    计算属性是为了让页面显示更加简洁,基于data数据进行处理的方法,以下为实例 <!DOCTYPE html> <html> <head> <title> ...

  8. 快速掌握Vue3:速成Vue3前端开发看这篇就够啦

    一.Vue基本概念 1.1-Vue3的优点 Vue3支持Vue2额大多数特性. 更好的支持TypeScript. 打包大小减少41%. 初次渲染快55%,更新渲染快133%. 内存减少54%. 使用p ...

  9. 论文解读(SentiX)《SentiX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis》

    Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:SentiX: A Sentiment-Aware Pre-Trained Model for Cross ...

  10. 如何利用AI智能聊天机器人10秒钟做出一个故事绘本的神奇插件

    原文链接:如何利用AI智能聊天机器人10秒钟做出一个故事绘本的神奇插件 ChatGPT以下称为AI智能聊天机器人 一.AI智能聊天机器人4中集成"Stories"插件 对于已经熟悉 ...