import tensorflow as tf

tf.test.is_gpu_available()

  1. 背景

    环境:Anaconda 、tensorflow_gpu==1.4.0 (这里就用1.4.0版本做演示了,虽然现在的已经是2.0版本了)

    如下图是各个版本的cuda版本信息,在安装时需要看清楚,并不是所有的gpu版本都是cuda_8.0

    材料:cuda_8.0版本链接:https://pan.baidu.com/s/1lzKSWRLl5lYMrYcLjGbVXw

    提取码:2p9i
  2. 安装cuda

    下载之后点击执行cuda





    这里可以选择安装的模式:精简也可以选择自定义



    安装路径可以自定义,也可以默认。选择自定义得记住安装的路径(后面配置环境变量)

    后面的就是一键Next,完成即可
  3. 配置系统环境变量

在系统环境变量中配置环境变量,在cuda安装好时会自动的配置两个,另外两个需要自己配置(ps:如果安装路径是自定义的话,需要根据情况自行变动)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\libnvvp

在完成了上述的配置后,可以验证一下是否配置成功:

在cmd中输入如下的代码:

echo %path%

执行结果如下:

4.配置cudnn:

在分享的安装包中有一个压缩包,将其解压会出现三个文件夹:



将这三个文件夹里面的文件对应的复制到cuda文件下:

(注意这里是将文件下的文件复制到cuda对应的文件夹里面,而不是将文件夹直接替代cuda下的文件夹(这步特别重要))





4.验证:

完成上述的所有步骤后,基本上就完成了大部分了!!!

验证是否成功:

打开pycharm,在里面输入如下测试代码:(前提是已经安装了相应版本tensorflow_gpu,这里给出1.4.0安装方法:在cmd中输入pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.4.0)

import ctypes
import imp
import sys
def main():
try:
import tensorflow as tf
print("TensorFlow successfully installed.")
if tf.test.is_built_with_cuda():
print("The installed version of TensorFlow includes GPU support.")
else:
print("The installed version of TensorFlow does not include GPU support.")
sys.exit(0)
except ImportError:
print("ERROR: Failed to import the TensorFlow module.") candidate_explanation = False python_version = sys.version_info.major, sys.version_info.minor
print("\n- Python version is %d.%d." % python_version)
if not (python_version == (3, 5) or python_version == (3, 6)):
candidate_explanation = True
print("- The official distribution of TensorFlow for Windows requires "
"Python version 3.5 or 3.6.") try:
_, pathname, _ = imp.find_module("tensorflow")
print("\n- TensorFlow is installed at: %s" % pathname)
except ImportError:
candidate_explanation = False
print("""
- No module named TensorFlow is installed in this Python environment. You may
install it using the command `pip install tensorflow`.""") try:
msvcp140 = ctypes.WinDLL("msvcp140.dll")
except OSError:
candidate_explanation = True
print("""
- Could not load 'msvcp140.dll'. TensorFlow requires that this DLL be
installed in a directory that is named in your %PATH% environment
variable. You may install this DLL by downloading Microsoft Visual
C++ 2015 Redistributable Update 3 from this URL:
https://www.microsoft.com/en-us/download/details.aspx?id=53587""") try:
cudart64_80 = ctypes.WinDLL("cudart64_80.dll")
except OSError:
candidate_explanation = True
print("""
- Could not load 'cudart64_80.dll'. The GPU version of TensorFlow
requires that this DLL be installed in a directory that is named in
your %PATH% environment variable. Download and install CUDA 8.0 from
this URL: https://developer.nvidia.com/cuda-toolkit""") try:
nvcuda = ctypes.WinDLL("nvcuda.dll")
except OSError:
candidate_explanation = True
print("""
- Could not load 'nvcuda.dll'. The GPU version of TensorFlow requires that
this DLL be installed in a directory that is named in your %PATH%
environment variable. Typically it is installed in 'C:\Windows\System32'.
If it is not present, ensure that you have a CUDA-capable GPU with the
correct driver installed.""") cudnn5_found = False
try:
cudnn5 = ctypes.WinDLL("cudnn64_5.dll")
cudnn5_found = True
except OSError:
candidate_explanation = True
print("""
- Could not load 'cudnn64_5.dll'. The GPU version of TensorFlow
requires that this DLL be installed in a directory that is named in
your %PATH% environment variable. Note that installing cuDNN is a
separate step from installing CUDA, and it is often found in a
different directory from the CUDA DLLs. You may install the
necessary DLL by downloading cuDNN 5.1 from this URL:
https://developer.nvidia.com/cudnn""") cudnn6_found = False
try:
cudnn = ctypes.WinDLL("cudnn64_6.dll")
cudnn6_found = True
except OSError:
candidate_explanation = True if not cudnn5_found or not cudnn6_found:
print()
if not cudnn5_found and not cudnn6_found:
print("- Could not find cuDNN.")
elif not cudnn5_found:
print("- Could not find cuDNN 5.1.")
else:
print("- Could not find cuDNN 6.")
print("""
The GPU version of TensorFlow requires that the correct cuDNN DLL be installed
in a directory that is named in your %PATH% environment variable. Note that
installing cuDNN is a separate step from installing CUDA, and it is often
found in a different directory from the CUDA DLLs. The correct version of
cuDNN depends on your version of TensorFlow: * TensorFlow 1.2.1 or earlier requires cuDNN 5.1. ('cudnn64_5.dll')
* TensorFlow 1.3 or later requires cuDNN 6. ('cudnn64_6.dll') You may install the necessary DLL by downloading cuDNN from this URL:
https://developer.nvidia.com/cudnn""") if not candidate_explanation:
print("""
- All required DLLs appear to be present. Please open an issue on the
TensorFlow GitHub page: https://github.com/tensorflow/tensorflow/issues""")
sys.exit(-1)
if __name__ == "__main__":
main()

如果出现以下结果则表明已经配置成功了:

TensorFlow successfully installed.
The installed version of TensorFlow includes GPU support.

若是出现以下问题则表明环境配置出错了:

Could not load ‘cudart64_80.dll’. The GPU version of TensorFlow
requires that this DLL be installed in a directory that is named in
your %PATH% environment variable. Download and install CUDA 8.0 from
this URL: https://developer.nvidia.com/cuda-toolkit

5.模型gpu加速训练:

# 测试tensorflow_gpu版本加速效果代码
from datetime import datetime
import math
import time
import tensorflow as tf
import os
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
batch_size = 32
num_batches = 100
# 该函数用来显示网络每一层的结构,展示tensor的尺寸 def print_activations(t):
print(t.op.name, ' ', t.get_shape().as_list()) # with tf.name_scope('conv1') as scope # 可以将scope之内的variable自动命名为conv1/xxx,便于区分不同组件 def inference(images):
parameters = []
# 第一个卷积层
with tf.name_scope('conv1') as scope:
# 卷积核、截断正态分布
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64],
dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
# 可训练
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
print_activations(conv1)
parameters += [kernel, biases]
# 再加LRN和最大池化层,除了AlexNet,基本放弃了LRN,说是效果不明显,还会减速?
lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn1')
pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1')
print_activations(pool1)
# 第二个卷积层,只有部分参数不同
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv2)
# 稍微处理一下
lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name='lrn2')
pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2')
print_activations(pool2)
# 第三个
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384], dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv3)
# 第四层
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv4)
# 第五个
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv5)
# 之后还有最大化池层
pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool5')
print_activations(pool5)
return pool5, parameters
# 全连接层
# 评估每轮计算时间,第一个输入是tf得Session,第二个是运算算子,第三个是测试名称
# 头几轮有显存加载,cache命中等问题,可以考虑只计算第10次以后的
def time_tensorflow_run(session, target, info_string):
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
# 进行num_batches+num_steps_burn_in次迭代
# 用time.time()记录时间,热身过后,开始显示时间
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print('%s:step %d, duration = %.3f' % (datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
# 计算每轮迭代品均耗时和标准差sd
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' % (datetime.now(), info_string, num_batches, mn, sd))
def run_benchmark():
# 首先定义默认的Graph
with tf.Graph().as_default():
# 并不实用ImageNet训练,知识随机计算耗时
image_size = 224
images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype=tf.float32, stddev=1e-1))
pool5, parameters = inference(images)
init = tf.global_variables_initializer()
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
sess.run(init)
# 下面直接用pool5传入训练(没有全连接层)
# 只是做做样子,并不是真的计算
time_tensorflow_run(sess, pool5, "Forward")
# 瞎弄的,伪装
objective = tf.nn.l2_loss(pool5)
grad = tf.gradients(objective, parameters)
time_tensorflow_run(sess, grad, "Forward-backward")
run_benchmark()

好啦,到这里就大功告成啦~~~~

可以体会gpu给你带来训练时的高速了,个人觉得还是得有一块好的显卡,这样加速效果会更好,速度更快。。。。

6.结束:

有什么问题和建议欢迎给我发邮件:1017190168@qq.com

或者直接联系我:1017190168

tensorflow GPU版本配置加速环境的更多相关文章

  1. 【转】Ubuntu 16.04安装配置TensorFlow GPU版本

    之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...

  2. Eclipse(非J2EE版本)配置Extjs环境以及安装部署Tomcat

    Eclipse(非J2EE版本)配置Extjs环境(Spket) 1. 安装spket插件,帮助->安装新软件->http://www.agpad.com/update. 2. 设置Spk ...

  3. 通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)

    一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6 ...

  4. Windows7 64bits下安装TensorFlow GPU版本(图文详解)

    不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先 ...

  5. win10系统下安装TensorFlow GPU版本

    首先要说,官网上的指南是最好的指南. https://www.tensorflow.org/install/install_windows 需要FQ看. 想要安装gpu版本的TensorFlow.我们 ...

  6. Win10上安装Keras 和 TensorFlow(GPU版本)

    一. 安装环境 Windows 10 64bit  家庭版 GPU: GeForce GTX1070 Python: 3.5 CUDA: CUDA Toolkit 8.0 GA1 (Sept 2016 ...

  7. tensorflow 一些好的blog链接和tensorflow gpu版本安装

    pading :SAME,VALID 区别  http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法 ...

  8. windows下caffe GPU版本配置

    由于项目需要,所以在自己本子上配置了一下windows下GPU版本的caffe; 硬件:  win10    ;      gtx1070独显(计算能力6.1): 安装软件:     cudnn-8. ...

  9. 说说Windows7 64bits下安装TensorFlow GPU版本会遇到的一些坑

    不多说,直接上干货! 再写博文,回顾在Windows7上安装TensorFlow-GPU的一路坑 Windows7上安装TensorFlow的GPU版本后记 欢迎大家,加入我的微信公众号:大数据躺过的 ...

  10. tensorflow GPU版本安装及配置

    经检测速度大幅度上升,不枉费我折腾了这么久,最坑的就是网上教程.书都没有写将cuda的bin加入全局变量,还是根据报错信息推出来的. 1.cuda9.0下载安装 https://developer.n ...

随机推荐

  1. 深入理解Linux内核——内存管理(2)

    提要:本系列文章主要参考MIT 6.828课程以及两本书籍<深入理解Linux内核> <深入Linux内核架构>对Linux内核内容进行总结. 内存管理的实现覆盖了多个领域: ...

  2. 代码随想录算法训练营第二十九天| 491.递增子序列 46.全排列 47.全排列 II

      491.递增子序列 卡哥建议:本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里.  https://programmercarl.com/0491.%E9%80%92%E5% ...

  3. HDLbits_Conwaylife

    题目介绍 题目链接 Conwaylife 简介 题目要求我们实现一个康威生命游戏的电路. 该游戏在一个二维网格空间中进行,在该题目中是 16 * 16 的大小,每一个格子都有两种状态(0 或 1),代 ...

  4. Redis漏洞总结--未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543)

    Redis未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543) 环境复现 采用Vulfocu ...

  5. Python使用socket的UDP协议实现FTP文件服务

    简介 本示例主要是用Python的socket,使用UDP协议实现一个FTP服务端.FTP客户端,用来实现文件的传输.在公司内网下,可以不适用U盘的情况下,纯粹使用网络,来实现文件服务器的搭建,进而实 ...

  6. Python面向对象——面向对象介绍、实现面向对象编程、定义类、再调用类产生对象、总结__init__方法、查找顺序

    文章目录 面向对象介绍 实现面向对象编程 一:先定义类 二:再调用类产生对象 总结__init__方法 查找顺序 面向对象介绍 ''' 面向过程: 核心是"过程"二字 过程的终极奥 ...

  7. 第七单元《中国传统文化与管理》单元测试 mooc

    第七单元<中国传统文化与管理>单元测试 返回 本次得分为:8.00/10.00, 本次测试的提交时间为:2020-08-30, 如果你认为本次测试成绩不理想,你可以选择 再做一次 . 1 ...

  8. 快速展示原型之Minimal API开发

    Minimal API官网地址: https://learn.microsoft.com/zh-cn/aspnet/core/fundamentals/minimal-apis/security?vi ...

  9. Emit 实体绑定源码开源,支持类以及匿名类绑定(原创)

    动态实体绑定 主要有以下两种 1.表达式树构建委托 2.Emit构建委托 根据我的经验 Emit 代码量可以更少可以很好实现代码复用 Emit实践开源项目地址跳转 https://www.cnblog ...

  10. Vue之class的用法

    Vue中class的使用总结如下: 使用形式v-bind:class  简写:class 1.在数组中使用一个class <!DOCTYPE html> <html lang=&qu ...