一、Storm集群构建

编写storm 与 zookeeper的yml文件

storm yml文件的编写

具体如下:

version: '2'

services:

  zookeeper1:

    image: registry.aliyuncs.com/denverdino/zookeeper:3.4.8

    container_name: zk1.cloud

    environment:

      - SERVER_ID=1

      - ADDITIONAL_ZOOKEEPER_1=server.1=0.0.0.0:2888:3888

      - ADDITIONAL_ZOOKEEPER_2=server.2=zk2.cloud:2888:3888

      - ADDITIONAL_ZOOKEEPER_3=server.3=zk3.cloud:2888:3888

  zookeeper2:

    image: registry.aliyuncs.com/denverdino/zookeeper:3.4.8

    container_name: zk2.cloud

    environment:

      - SERVER_ID=2

      - ADDITIONAL_ZOOKEEPER_1=server.1=zk1.cloud:2888:3888

      - ADDITIONAL_ZOOKEEPER_2=server.2=0.0.0.0:2888:3888

      - ADDITIONAL_ZOOKEEPER_3=server.3=zk3.cloud:2888:3888

  zookeeper3:

    image: registry.aliyuncs.com/denverdino/zookeeper:3.4.8

    container_name: zk3.cloud

    environment:

      - SERVER_ID=3

      - ADDITIONAL_ZOOKEEPER_1=server.1=zk1.cloud:2888:3888

      - ADDITIONAL_ZOOKEEPER_2=server.2=zk2.cloud:2888:3888

      - ADDITIONAL_ZOOKEEPER_3=server.3=0.0.0.0:2888:3888

  ui:

    image: registry.aliyuncs.com/denverdino/baqend-storm:1.0.0

    command: ui -c nimbus.host=nimbus

    environment:

      - STORM_ZOOKEEPER_SERVERS=zk1.cloud,zk2.cloud,zk3.cloud

    restart: always

    container_name: ui

    ports:

      - 8080:8080

    depends_on:

      - nimbus

  nimbus:

    image: registry.aliyuncs.com/denverdino/baqend-storm:1.0.0

    command: nimbus -c nimbus.host=nimbus

    restart: always

    environment:

      - STORM_ZOOKEEPER_SERVERS=zk1.cloud,zk2.cloud,zk3.cloud

    container_name: nimbus

    ports:

      - 6627:6627

  supervisor:

    image: registry.aliyuncs.com/denverdino/baqend-storm:1.0.0

    command: supervisor -c nimbus.host=nimbus -c supervisor.slots.ports=[6700,6701,6702,6703]

    restart: always

    environment:

      - affinity:role!=supervisor

      - STORM_ZOOKEEPER_SERVERS=zk1.cloud,zk2.cloud,zk3.cloud

    depends_on:

      - nimbus

networks:

  default:

    external:

      name: zk-net

拉取Storm搭建需要的镜像,这里我选择镜像版本为 zookeeper:3.4.8  storm:1.0.0

键入命令:

docker pull zookeeper:3.4.8  docker pull storm:1.0.0

storm镜像 获取

使用docker-compose 构建集群

在power shell中执行以下命令:

docker-compose -f storm.yml up -d

                      docker-compose 构建集群

在浏览器中打开localhost:8080 可以看到storm集群的详细情况

storm UI 展示

二、Storm统计任务

统计股票交易情况交易量和交易总金额   (数据文件存储在csv文件中)

编写DataSourceSpout类

DataSourceSpout类

编写bolt类

编写topology类

需要注意的是 Storm Java API 下有本地模型和远端模式

在本地模式下的调试不依赖于集群环境,可以进行简单的调试

如果需要使用生产模式,则需要将

1、 编写和自身业务相关的spout和bolt类,并将其打包成一个jar包

2、将上述的jar包放到客户端代码能读到的任何位置,

3、使用如下方式定义一个拓扑(Topology)

演示结果:

本地模式下的调试:

正在执行:

根据24小时

根据股票种类

生产模式:

向集群提交topology

三、核心计算bolt的代码

1.统计不同类型的股票交易量和交易总金额:

package bolt;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import java.util.Set;

import org.apache.storm.task.OutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseRichBolt;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

@SuppressWarnings("serial")

public class TypeCountBolt extends BaseRichBolt {

    OutputCollector collector;

    Map<String,Integer> map = new HashMap<String, Integer>();

    Map<String,Float> map2 = new HashMap<String, Float>();

    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {

        this.collector = collector;

    }

    public void execute(Tuple input) {

        String line = input.getStringByField("line");

        String[] data = line.split(",");

        Integer count = map.get(data[2]);

        Float total_amount = map2.get(data[2]);

        if(count==null){

            count = 0;

        }

        if(total_amount==null){

            total_amount = 0.0f;

        }

        count++;

        total_amount+=Float.parseFloat(data[3]) * Integer.parseInt(data[4]);

        map.put(data[2],count);

        map2.put(data[2],total_amount);

        System.out.println("~~~~~~~~~~~~~~~~~~~~~~~");

        Set<Map.Entry<String,Integer>> entrySet = map.entrySet();

        for(Map.Entry<String,Integer> entry :entrySet){

            System.out.println("交易量:");

            System.out.println(entry);

        }

        System.out.println();

        Set<Map.Entry<String,Float>> entrySet2 = map2.entrySet();

        for(Map.Entry<String,Float> entry :entrySet2){

            System.out.println("交易总金额:");

            System.out.println(entry);

        }

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }

}

2. 统计不同每个小时的交易量和交易总金额

package bolt;

import org.apache.storm.task.OutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseRichBolt;

import org.apache.storm.tuple.Tuple;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import java.util.Set;

public  class TimeCountBolt extends BaseRichBolt {

    OutputCollector collector;

    Map<Integer,Integer> map = new HashMap<Integer, Integer>();

    Map<Integer,Float> map2 = new HashMap<Integer, Float>();

    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {

        this.collector = collector;

    }

    public void execute(Tuple input) {

        String line = input.getStringByField("line");

        String[] data = line.split(",");

        Date date = new Date();

        SimpleDateFormat dateFormat= new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

        try {

            date = dateFormat.parse(data[0]);

        } catch (ParseException e) {

            e.printStackTrace();

        }

        Integer count = map.get(date.getHours());

        Float total_amount = map2.get(date.getHours());

        if(count==null){

            count = 0;

        }

        if(total_amount==null){

            total_amount = 0.0f;

        }

        count++;

        total_amount+=Float.parseFloat(data[3]) * Integer.parseInt(data[4]);

        map.put(date.getHours(),count);

        map2.put(date.getHours(),total_amount);

        System.out.println("~~~~~~~~~~~~~~~~~~~~~~~");

        Set<Map.Entry<Integer,Integer>> entrySet = map.entrySet();

        for(Map.Entry<Integer,Integer> entry :entrySet){

            System.out.println("交易量:");

            System.out.println(entry);

        }

        System.out.println();

        Set<Map.Entry<Integer,Float>> entrySet2 = map2.entrySet();

        for(Map.Entry<Integer,Float> entry :entrySet2){

            System.out.println("交易总金额:");

            System.out.println(entry);

        }

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }

}

Storm 集群的搭建及其Java编程进行简单统计计算的更多相关文章

  1. 【Hadoop离线基础总结】zookeeper的介绍以及集群环境搭建、网络编程和RPC的简单了解

    ZooKeeper的介绍以及集群环境搭建.网络编程和RPC的简单了解 ZooKeeper介绍 概述 ZooKeeper是一个分布式协调服务的开源框架,主要用来解决分布式集群中应用系统的一致性问题.例如 ...

  2. 一:Storm集群环境搭建

    第一:storm集群环境准备及部署[1]硬件环境准备--->机器数量>=3--->网卡>=1--->内存:尽可能大--->硬盘:无额外需求[2]软件环境准备---& ...

  3. 大数据处理框架之Strom:Storm集群环境搭建

    搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo)      zookeeper-3.4.11 jdk1.7.0_80      Pyth ...

  4. Storm —— 集群环境搭建

    一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...

  5. Storm 学习之路(四)—— Storm集群环境搭建

    一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...

  6. Storm 系列(四)—— Storm 集群环境搭建

    一.集群规划 这里搭建一个 3 节点的 Storm 集群:三台主机上均部署 Supervisor 和 LogViewer 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Nimbus ...

  7. storm集群环境搭建

    1.环境 Java环境 卸载虚机环境中自带的openJdk,安装sun的jdk,配置环境变量 2.安装storm 下载storm安装包 解压到安装目录,配置环境变量 vi /etc/profile # ...

  8. storm集群快速搭建

    sudo mkdir /export/serverssudo chmod -R 777 /exportmkdir /export/servers tar -zxvf apache-storm-1.0. ...

  9. Storm集群的搭建

    storm的环境和hadoop的环境没有任何关系 1.安装Zookeeper集群 2.解压storm 3.修改文件conf/storm.yaml 3.1.配置zookeeper服务器 storm.zo ...

  10. centos7:storm集群环境搭建

    1.安装storm 下载storm安装包 在线下载 wget http://apache.fayea.com/storm/apache-storm-1.1.1/apache-storm-1.1.1.t ...

随机推荐

  1. Hadoop核心概念

    大数据开发总体架构: Hadoop是大数据开发所使用的一个核心框架.使用Hadoop可以方便的管理分布式集群,将海量数据分布式的存储在集群中,并使用分布式并行程序来处理这些数据. Hadoop由许多子 ...

  2. 机器学习(6)K近邻算法

    k-近邻,通过离你最近的来判断你的类别 例子: 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近的样本中大多数属于某一类别),则该样本属于这个类别 K近邻需要做标准化处理 例如: imp ...

  3. Solution -「BZOJ 3771」Triple

    Description Link. 给你一个序列,你每次可以取 \(1\sim3\) 个数然后计算和,问你对于每一种和,方案数是多少. Solution 设一个 OGF \(A(x)=\sum_{i= ...

  4. No module named virtualenvwrapper 虚拟环境报错

    No module named virtualenvwrapper 虚拟环境报错 安装虚拟环境命令 sudo pip install virtualenv sudo pip install virtu ...

  5. POWERBI_1分钟学会_连续上升或下降指标监控

    一:数据源 模拟数据为三款奶茶销量的日销售数据源,日期是23.8.24-23.8.31.A产品为连续7天,日环比下降,B产品为连续3天,日环比下降,C产品为连续2天,日环比下降. 二:建立基础度量值 ...

  6. 期中考试成绩出来了。分数在70~80是等级B。

    #多输入 空格分割a = input()b = a.split()c = list(map(int, b))print(c) 等级B   描述 期中考试成绩出来了.分数在70-80是等级B. 输入 请 ...

  7. gson如何序列化子类

    需求 目前有一个需求,不同对象有一些公共属性,分别也有一些不同的属性.对方传过来的json字符串中,把这些对象组成了一个数组返回过来的.这样该如何反序列化呢? 举例 定义Person类.Student ...

  8. Hall定理(霍尔定理)证明及推广

    引言 网络上有许多Hall定理的证明,但是对于Hall定理的几个推广的介绍却少之又少,因此本文来简单介绍一下 注:为了使这篇文章看起来简单易懂,本文将不会使用图论语言,会图论的朋友们可以自行翻译为图论 ...

  9. ELK7.x环境部署

    1.Elasticsearch (ES)配置: 部署配置ES,需要配置JDK环境,JDK是Java语言的软件开发工具包: 下载JAVA jdk源码包: wget https://mirrors.yan ...

  10. Chromium VIZ架构详解

    1. VIZ的三个端 在设计层面上 viz 的架构如下图所示: 在设计上 viz 分了三个端,分别是 client 端, host 端和 service 端. client 端用于生成要显示的画面(C ...