什么是RLHF?

**字面翻译:**RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。

强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智慧和经验纳入模型训练过程中,创建更健壮的学习过程的方法。该技术涉及使用人类反馈创建奖励信号,然后通过强化学习来改善模型的行为。

强化学习,简单来说,是一个过程,其中AI代理通过与环境的交互和以奖励或惩罚的形式获得的反馈来学习做出决策。代理的目标是随时间最大化累积奖励。 RLHF通过用人类生成的反馈替换或补充预定义的奖励函数,从而允许模型更好地捕捉复杂的人类偏好和理解,从而增强了这个过程。

RLHF的过程可以分为几个步骤:

  1. 初始模型训练:一开始,AI模型使用监督学习进行训练,人类训练者提供正确行为的标记示例。模型学习根据给定的输入预测正确的动作或输出。
  2. 收集人类反馈:在初始模型被训练之后,人类训练者提供对模型表现的反馈。他们根据质量或正确性排名不同的模型生成的输出或行为。这些反馈被用来创建强化学习的奖励信号。
  3. 强化学习:然后使用Proximal Policy Optimization (PPO)或类似的算法对模型进行微调,这些算法将人类生成的奖励信号纳入其中。模型通过从人类训练者提供的反馈学习,不断提高其性能。
  4. 迭代过程:收集人类反馈并通过强化学习改进模型的过程是重复进行的,这导致模型的性能不断提高。

和gpt之间的关系

RLHF技术与GPT系列模型之间有密切的关系,因为RLHF被用于训练这些模型之一的ChatGPT,同时也被用于GPT-4的开发。这些模型使用大规模的神经网络,可以生成自然语言文本,例如对话和文章。

然而,对于自然语言处理任务,通常很难定义和测量奖励函数,特别是当涉及到人类价值和偏好的复杂任务时。在这种情况下,使用RLHF技术可以让语言模型在不需要人为指定奖励函数的情况下,通过与人类交互获得反馈信号来优化其生成的文本。这使得语言模型能够更好地捕捉人类的偏好和理解,并提供更加自然和准确的文本输出。因此,RLHF技术是GPT系列模型成功的关键之一,使其能够在许多自然语言处理任务中取得显著的成果。

reference:https://en.wikipedia.org/wiki/Reinforcement_learning_from_human_feedback

文章知识点与官方知识档案匹配,可进一步学习相关知识
OpenCV技能树首页概览17776 人正在系统学习中

【转帖】什么是RLHF的更多相关文章

  1. nginx负载均衡基于ip_hash的session粘帖

    nginx负载均衡基于ip_hash的session粘帖 nginx可以根据客户端IP进行负载均衡,在upstream里设置ip_hash,就可以针对同一个C类地址段中的客户端选择同一个后端服务器,除 ...

  2. [转帖]网络协议封封封之Panabit配置文档

    原帖地址:http://myhat.blog.51cto.com/391263/322378

  3. [转帖]零投入用panabit享受万元流控设备——搭建篇

    原帖地址:http://net.it168.com/a2009/0505/274/000000274918.shtml 你想合理高效的管理内网流量吗?你想针对各个非法网络应用与服务进行合理限制吗?你是 ...

  4. 3d数学总结帖

    3d数学总结帖,以下是对3d学习过程中数学知识的简单总结 角度值和弧度制的互转 Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180 Rad2Deg 弧度A2转换角度A1 => ...

  5. [转帖]The Lambda Calculus for Absolute Dummies (like myself)

    Monday, May 7, 2012 The Lambda Calculus for Absolute Dummies (like myself)   If there is one highly ...

  6. [转帖]FPGA开发工具汇总

    原帖:http://blog.chinaaet.com/yocan/p/5100017074 ----------------------------------------------------- ...

  7. [Android分享] 【转帖】Android ListView的A-Z字母排序和过滤搜索功能

      感谢eoe社区的分享   最近看关于Android实现ListView的功能问题,一直都是小伙伴们关心探讨的Android开发问题之一,今天看到有关ListView实现A-Z字母排序和过滤搜索功能 ...

  8. AxureRP7.0各类交互效果汇总帖(转)

    了便于大家参考,我把这段时间发布分享的所有关于AxureRP7.0的原型做了整理. 以下资源均有对应的RP源文件可以下载. 当然 ,其中有部分是需要通过完成解密游戏[攻略]才能得到下载地址或者下载密码 ...

  9. 未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u010259408]

    未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u01025 ...

  10. 转帖-[教程] Win7精简教程(简易中度)2016年8月-0day

    [教程] Win7精简教程(简易中度)2016年8月 0day 发表于 2016-8-19 16:08:41  https://www.itsk.com/thread-370260-1-1.html ...

随机推荐

  1. 绝了,华为云服务器“The 3”出道,每款都很能打

    近年来,随着企业上云转型.互联网信息产业技术不断发展与革新,云服务器在主机市场逐渐占领主导地位,云服务器品牌层出不穷,各家云厂商都想占据一席之地,这也就对各云厂商的提供的云服务器算力和云端服务能力的要 ...

  2. 音视频传输协议众多, 5G时代不同业务应该如何选择?

    摘要:音视频传输协议众多, 不同业务应该如何选择? RTSP.RTMP.RTP/RTC.HLS.MSS.DASH.WEBRTC.RIST.SRT:在此我们就从业务发展的视角来理解各种流媒体协议,帮助大 ...

  3. 关于GaussDB(DWS)的正则表达式知多少?人人都能看得懂的详解来了!

    摘要:GaussDB(DWS)除了支持标准的POSIX正则表达式句法,还拥有一些特殊句法和选项,这些你可了解?本文便为你讲解这些特殊句法和选项. 概述 正则表达式(Regular Expression ...

  4. 10亿数据、查询<10s,论基于OLAP搭建广告系统的正确姿势

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群   由于流量红利逐渐消退,越来越多的广告企业和从业者开始探索精细化营销的新路径,取代以往的全流量.粗放式的广告轰炸 ...

  5. 取消 SQL Server 密码复杂度

    可以先设置一个复杂密码,安装完成后,进入数据库,执行下列命令,关闭复杂密码策略及修改简单密码 ALTER LOGIN sa WITH PASSWORD = '新密码', CHECK_POLICY = ...

  6. POJ 1417 True Liars (并查集+DP)

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1556 Accepted: 457 Description After havi ...

  7. kafka集群四、权限增加ACL

    系列导航 一.kafka搭建-单机版 二.kafka搭建-集群搭建 三.kafka集群增加密码验证 四.kafka集群权限增加ACL 五.kafka集群__consumer_offsets副本数修改 ...

  8. 1、springboot工程新建(单模块)

    系列导航 springBoot项目打jar包 1.springboot工程新建(单模块) 2.springboot创建多模块工程 3.springboot连接数据库 4.SpringBoot连接数据库 ...

  9. 四、mycat垂直分库

    系列导航 一.Mycat实战---为什么要用mycat 二.Mycat安装 三.mycat实验数据 四.mycat垂直分库 五.mycat水平分库 六.mycat全局自增 七.mycat-ER分片 一 ...

  10. Docker 魔法解密:探索 UnionFS 与 OverlayFS

    本文主要介绍了 Docker 的另一个核心技术:Union File System.主要包括对 overlayfs 的演示,以及分析 docker 是如何借助 ufs 实现容器 rootfs 的. 如 ...