什么是RLHF?

**字面翻译:**RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。

强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智慧和经验纳入模型训练过程中,创建更健壮的学习过程的方法。该技术涉及使用人类反馈创建奖励信号,然后通过强化学习来改善模型的行为。

强化学习,简单来说,是一个过程,其中AI代理通过与环境的交互和以奖励或惩罚的形式获得的反馈来学习做出决策。代理的目标是随时间最大化累积奖励。 RLHF通过用人类生成的反馈替换或补充预定义的奖励函数,从而允许模型更好地捕捉复杂的人类偏好和理解,从而增强了这个过程。

RLHF的过程可以分为几个步骤:

  1. 初始模型训练:一开始,AI模型使用监督学习进行训练,人类训练者提供正确行为的标记示例。模型学习根据给定的输入预测正确的动作或输出。
  2. 收集人类反馈:在初始模型被训练之后,人类训练者提供对模型表现的反馈。他们根据质量或正确性排名不同的模型生成的输出或行为。这些反馈被用来创建强化学习的奖励信号。
  3. 强化学习:然后使用Proximal Policy Optimization (PPO)或类似的算法对模型进行微调,这些算法将人类生成的奖励信号纳入其中。模型通过从人类训练者提供的反馈学习,不断提高其性能。
  4. 迭代过程:收集人类反馈并通过强化学习改进模型的过程是重复进行的,这导致模型的性能不断提高。

和gpt之间的关系

RLHF技术与GPT系列模型之间有密切的关系,因为RLHF被用于训练这些模型之一的ChatGPT,同时也被用于GPT-4的开发。这些模型使用大规模的神经网络,可以生成自然语言文本,例如对话和文章。

然而,对于自然语言处理任务,通常很难定义和测量奖励函数,特别是当涉及到人类价值和偏好的复杂任务时。在这种情况下,使用RLHF技术可以让语言模型在不需要人为指定奖励函数的情况下,通过与人类交互获得反馈信号来优化其生成的文本。这使得语言模型能够更好地捕捉人类的偏好和理解,并提供更加自然和准确的文本输出。因此,RLHF技术是GPT系列模型成功的关键之一,使其能够在许多自然语言处理任务中取得显著的成果。

reference:https://en.wikipedia.org/wiki/Reinforcement_learning_from_human_feedback

文章知识点与官方知识档案匹配,可进一步学习相关知识
OpenCV技能树首页概览17776 人正在系统学习中

【转帖】什么是RLHF的更多相关文章

  1. nginx负载均衡基于ip_hash的session粘帖

    nginx负载均衡基于ip_hash的session粘帖 nginx可以根据客户端IP进行负载均衡,在upstream里设置ip_hash,就可以针对同一个C类地址段中的客户端选择同一个后端服务器,除 ...

  2. [转帖]网络协议封封封之Panabit配置文档

    原帖地址:http://myhat.blog.51cto.com/391263/322378

  3. [转帖]零投入用panabit享受万元流控设备——搭建篇

    原帖地址:http://net.it168.com/a2009/0505/274/000000274918.shtml 你想合理高效的管理内网流量吗?你想针对各个非法网络应用与服务进行合理限制吗?你是 ...

  4. 3d数学总结帖

    3d数学总结帖,以下是对3d学习过程中数学知识的简单总结 角度值和弧度制的互转 Deg2Rad 角度A1转弧度A2 => A2=A1*PI/180 Rad2Deg 弧度A2转换角度A1 => ...

  5. [转帖]The Lambda Calculus for Absolute Dummies (like myself)

    Monday, May 7, 2012 The Lambda Calculus for Absolute Dummies (like myself)   If there is one highly ...

  6. [转帖]FPGA开发工具汇总

    原帖:http://blog.chinaaet.com/yocan/p/5100017074 ----------------------------------------------------- ...

  7. [Android分享] 【转帖】Android ListView的A-Z字母排序和过滤搜索功能

      感谢eoe社区的分享   最近看关于Android实现ListView的功能问题,一直都是小伙伴们关心探讨的Android开发问题之一,今天看到有关ListView实现A-Z字母排序和过滤搜索功能 ...

  8. AxureRP7.0各类交互效果汇总帖(转)

    了便于大家参考,我把这段时间发布分享的所有关于AxureRP7.0的原型做了整理. 以下资源均有对应的RP源文件可以下载. 当然 ,其中有部分是需要通过完成解密游戏[攻略]才能得到下载地址或者下载密码 ...

  9. 未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u010259408]

    未能加载文件或程序集“Newtonsoft.Json, Version=4.0.0.0, Culture=neutral, PublicKeyToken=30a [问题点数:40分,结帖人u01025 ...

  10. 转帖-[教程] Win7精简教程(简易中度)2016年8月-0day

    [教程] Win7精简教程(简易中度)2016年8月 0day 发表于 2016-8-19 16:08:41  https://www.itsk.com/thread-370260-1-1.html ...

随机推荐

  1. mac phpbrew安装

    php 编译安装php 7.2.26 aliyun 镜像中心:https://developer.aliyun.com/mirror/ 1.安装brew /usr/bin/ruby -e " ...

  2. .NET技术分享日活动-202110

    2021年10月15日下午,个人组织举办了山东地区的第三次.NET技术分享日活动.围绕.NET.低代码Low Code.云原生 Cloud Native.大数据.算法等方向进行创新技术的实践分享. 本 ...

  3. 从部署和运维说说DLI(1)

    DLI是支持多模引擎的Serverless大数据计算服务,其很好的实现了Serverless的特性:   1. 弱化了存储和计算之间的联系: 2. 代码的执行不再需要手动分配资源: 3. 按使用量计费 ...

  4. 昇腾CANN 7.0 黑科技:大模型训练性能优化之道

    本文分享自华为云社区<昇腾CANN 7.0 黑科技:大模型训练性能优化之道>,作者: 昇腾CANN . 目前,大模型凭借超强的学习能力,已经在搜索.推荐.智能交互.AIGC.生产流程变革. ...

  5. 开抢| 华为开发者大会2021(Cloud)早鸟票来了!

    他们,是技术的引领者 他们,是科学的追随者 他们用代码守护蓝色星球的生态 破解宇宙深处的密码 化解城市生活的不畅 捉摸自然气候的脾性 ...... 这些改变世界的成果背后 每一个开发者都了不起 --那 ...

  6. Python 绑定:从 Python 调用 C 或 C++

    摘要:您是拥有想要从 Python 中使用的C或 C++ 库的 Python 开发人员吗?如果是这样,那么Python 绑定允许您调用函数并将数据从 Python 传递到C或C++,让您利用这两种语言 ...

  7. 火山引擎 DataLeap 构建Data Catalog系统的实践(一):背景与调研思路

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 摘要 Data Catalog 产品,通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解 ...

  8. 火山引擎 DataTester 上线“流程画布”功能,支持组合型 A/B 实验分析

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 在精细化运营的时代,运营活动同样需要有精细化的策略,例如在年末大促活动中,设计 APP 弹窗提醒.满减.会员领券时 ...

  9. Solon2 开发之IoC,三、注入或手动获取 Bean

    1.如何注入Bean? 先了解一下Bean生命周期的简化版: 运行构建函数 尝试字段注入(有时同步注入,没时订阅注入.不会有相互依赖而卡住的问题) @Init 函数(是在容器初始化完成后才执行) .. ...

  10. PPT 笔刷:让你的PPT充满视觉冲击

    其实就是下载的AI效果 辅助文字展示 辅助图片展示 创意展示图片,增强视觉冲击力 使用 删除外面的边框 https://www.bilibili.com/video/BV1ha411g7f5?p=16