高斯消元&&luogu3389
高斯消元(Gauss)
高斯消元和我们做二元一次方程组差不多
流程:
1.把系数和右边的值就是用二维数组存下来->转化成矩阵
我们的目标是把这个矩阵装换成 上三角的形式
对角线系数全部为1,1下面都为0,为了下面的回带
2.利用 加减消元和等式两边除以一个数,一列一列的进行消元
顺便判断一下是否有解,对角线上系数不为0
3.求出上三角之后,我们倒着回代一下就可以求取解了
当选取主元的时候,由于是double类型,当对角线的系数太小时,此时用它做除数会带来误差扩散,使结果严重失真。所以我们在消元的过程中,如果出现主元相差较大,要选取最大数作为主元,并交换行列,(当然,消元完毕的上边不能考虑在内)
---参考数学一本通
代码
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std; const double eps=1e-;
int n;
double a[][];
double ans[]; int main()
{
scanf("%d",&n);
for(int i=; i<=n; ++i)
for(int j=; j<=n+; ++j)
scanf("%lf", &a[i][j]); for(int i=; i<=n; ++i) {
int pivot=i;
for(int j=i+; j<=n; ++j)//选取较大主元
if(fabs(a[j][i]) > fabs(a[pivot][i])) pivot=j;
if(abs(a[pivot][i]) < eps) { //判断有无解,无穷解也当做无解
printf("No Solution");
return ;
}
if(pivot!=i) swap(a[i],a[pivot]);//直接交换
double tmp=a[i][i];
for(int j=i; j<=n+; ++j) {
a[i][j]/=tmp;//系数化为1
}
for(int j=i+;j<=n;j++) {//下面的化为0
tmp=a[j][i];
for(int k=i;k<=n+;k++) {
a[j][k]-=a[i][k]*tmp;
}
}
}
ans[n]=a[n][n+];
for(int i=n-; i>=; i--) {
ans[i]=a[i][n+];
for(int j=i+; j<=n; ++j)
ans[i]-=a[i][j]*ans[j];
}//回带
for(int i=;i<=n;++i)
printf("%.2lf\n",ans[i]);
}
高斯消元&&luogu3389的更多相关文章
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- [高斯消元] POJ 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 614 Accepted: 286 Des ...
随机推荐
- eclipse maven build、maven clean、maven install和maven test的区别 精析
1.情景展示 选中maven项目,右键-->Run As或Debug As-->maven buid,maven install,maven test有什么区别? 2.区别说明 ...
- Constructing Roads----poj2421(最小生成树Kruskal)
题目链接: http://poj.org/problem?id=2421 想把n个村庄连接在一起:求最小生成树,不同的是已经有了m条线段链接在一起了,求剩下的: 感觉用Kruskal会简单一点 #in ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
- matplotlib基本使用方法
[微语]人生有可为之事,也有不可为之事.可为之事,当尽力为之,此谓尽性,不可为之事,当尽心为之,此谓知命. 三人行必有我师 官方参考API:https://matplotlib.org/tutoria ...
- oracle(八)块清除
(1) 快速块清除(fast block cleanout), 当事务修改的数据库全部保存在buffer cache并且修改数据块的数据量没有超过cache buffer 的10%,快速清除事务信息 ...
- OLTP与OLAP
当今的数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing).联机分析处理OLAP(On-Line Analytical Processing ...
- [py][mx]django form验证-给db减压
django form认证-解压db压力 一般系统都需要前后端都验证 前端验证容器逃逸破解,如通过js console口去发 试想如果后端只有db验证,那么前端无论发什么后端都查询一次db,对db压力 ...
- (转)找回Git中丢失的Commit
总结:更新代码前一定要先将本地修改的文件存到本地git仓库.今天脑残直接更新了远程仓库代码导入今天写的代码...... @[git|commit|reflog] 在使用Git的过程中,有时候会因为一些 ...
- phper
0 坚持写博客,有独立的博客1 有自己的github项目,目前致力于瓦力:meolu/walle-web · GitHub,瓦尔登:meolu/walden · GitHub变得更实用,欢迎标星:)2 ...
- SQL Server 2008 R2 超详细安装图文教程
一.下载SQL Server 2008 R2安装文件 ed2k://|file|cn_sql_server_2008_r2_enterprise_x86_x64_ia64_dvd_522233.iso ...