基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。
 
1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)
给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。
 
1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3
 
由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
Output
共T行,对应逆序排列的数量 Mod (10^9 + 7)
Input示例
1
4 3
Output示例
6

设f(n,k)表示n个数的排列中逆序数个数为k的排列数。

最大的数n可能会排在第n-i位,从而产生i个与n有关的逆序对,去掉n之后,剩下的n-1个数的排列有k-i个逆序对。所以,f(n,k)=求和(f(n-1,k-i))(0<=i<n)。
同理有f(n,k-1)=求和(f(n-1,k-1-i))(0<=i<n)。
两式相减,可得f(n,k)-f(n,k-1)=f(n-1,k)-f(n-1,k-n)。
递推公式为f(n,k)=f(n,k-1)+f(n-1,k)-f(n-1,k-n)。
然后动态规划可得。
#include<cstdio>
using namespace std; typedef long long ll;
const int MAXK = 2e4+;
const int MAXN = 1e3+;
const int mod = 1e9+;
#define min(a,b) (a<b)?a:b int n,k,dp[MAXN][MAXK]; // dp[n,k] = dp[n,k-1] + dp[n-1,k] - dp[n-1,k-n]; int getMod(ll t) {
if(t >= mod) return t-mod;
if(t<) return t+mod;
return t;
} void init() {
int i,j;
for(i=;i<=;i++) {
dp[i][]=;
for(j=;j<=i*(i-)/&&j<=;j++) {
ll tmp=;
ll tmp1=dp[i][j-];
ll tmp2=dp[i-][j];
ll tmp3=(j>=i)?dp[i-][j-i]:;
tmp = tmp1+tmp2-tmp3;
dp[i][j] = getMod(tmp);
}
}
}
int main () {
init();
int T; scanf("%d",&T);
while (T--){
scanf("%d %d",&n,&k);
printf("%d\n",dp[n][k]);
}
return ;
}

51nod 1020 逆序排列 递推DP的更多相关文章

  1. 51nod 1020 逆序排列 DP

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1020 逆序排列——dp

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  3. 51nod 1020 逆序排列(dp,递推)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意:是中文题. 题解:很显然要设dp[i][j]表示 ...

  4. 51nod 1020 逆序排列

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...

  5. 1020 逆序排列(DP)

    1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...

  6. 51 Nod 1020 逆序排列

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  7. 【题解】逆序排列 [51nod1020]

    [题解]逆序排列 [51nod1020] 传送门:逆序排列 \([51nod1020]\) [题目描述] 共 \(T\) 组测试点,每一组给出 \(2\) 个整数 \(n\) 和 \(k\),在 \( ...

  8. 递推DP URAL 1167 Bicolored Horses

    题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状 ...

  9. 递推DP URAL 1017 Staircases

    题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转 ...

随机推荐

  1. oracle(四) 常用语句

    1.分页 select t2.* from (select rownum row, t1.*  from your_table where rownum < ?) t2 where t2.row ...

  2. python爬虫CSDN文章抓取

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/nealgavin/article/details/27230679 CSDN原则上不让非人浏览訪问. ...

  3. 005-SpringBoot2.x整合Security5(解决 There is no PasswordEncoder mapped for the id "null")

    问题描述 SpringBoot升级到了2.0之后的版本,Security也由原来的版本4升级到了5 使用WebSecurityConfigurerAdapter继承重置方法 protected voi ...

  4. 阿里云安装docker 指定版本

    sh docker-install.sh 1.12.6 #ubuntu16.4 测试通过 #!/bin/sh set -e # # This script is meant for quick &am ...

  5. tomcat上部署CGI

    CGI的定义是:外部应用程序与Web服务器之间的接口. 1.Tomcat7支持CGI,但是默认配置是关闭的需要进行如下配置 修改Tomcat conf/web.xml中两处代码,默认是注释掉的,去掉注 ...

  6. 修改class文件

    http://yucaifu1989.iteye.com/blog/1850500 http://blog.csdn.net/hexin373/article/details/6669813 使用ja ...

  7. Mr Cao 的提问

    block调用时,变量的生命周期有哪几种?分别是什么样的? 98.CALayer的多个sublaye的数据结构,以及重绘顺序? 99.网路请求的超时及重试机制应该如何设计? 100.NSDiction ...

  8. Qt实现 QQ好友列表QToolBox

    简述 QToolBox类提供了一个列(选项卡式的)部件条目. QToolBox可以在一个tab列上显示另外一个,并且当前的item显示在当前的tab下面.每个tab都在tab列中有一个索引位置.tab ...

  9. 第六章 数据库设计之ER模型

    在ER图中实体用方框表示 实体其实就相当于一个二维表,实体实例就相当于二维表中的一行 属性在二维表中用椭圆表示,属性就是描述实体特征的数据项 概念:键(也被成为候选键):1,属性集合K上的行唯一   ...

  10. Mysql闭包表之关于国家区域的一个实践

    在电商系统中,我们总是会遇到一些树形结构数据的存储需求.如地理区域.位置信息存储,地理信息按照层级划分,会分为很多层级,就拿中国的行政区域划分为例,简单的省-市-县-镇-村就要五个级别.如果系统涉及到 ...