基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。
 
1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)
给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。
 
1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3
 
由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
Output
共T行,对应逆序排列的数量 Mod (10^9 + 7)
Input示例
1
4 3
Output示例
6

设f(n,k)表示n个数的排列中逆序数个数为k的排列数。

最大的数n可能会排在第n-i位,从而产生i个与n有关的逆序对,去掉n之后,剩下的n-1个数的排列有k-i个逆序对。所以,f(n,k)=求和(f(n-1,k-i))(0<=i<n)。
同理有f(n,k-1)=求和(f(n-1,k-1-i))(0<=i<n)。
两式相减,可得f(n,k)-f(n,k-1)=f(n-1,k)-f(n-1,k-n)。
递推公式为f(n,k)=f(n,k-1)+f(n-1,k)-f(n-1,k-n)。
然后动态规划可得。
#include<cstdio>
using namespace std; typedef long long ll;
const int MAXK = 2e4+;
const int MAXN = 1e3+;
const int mod = 1e9+;
#define min(a,b) (a<b)?a:b int n,k,dp[MAXN][MAXK]; // dp[n,k] = dp[n,k-1] + dp[n-1,k] - dp[n-1,k-n]; int getMod(ll t) {
if(t >= mod) return t-mod;
if(t<) return t+mod;
return t;
} void init() {
int i,j;
for(i=;i<=;i++) {
dp[i][]=;
for(j=;j<=i*(i-)/&&j<=;j++) {
ll tmp=;
ll tmp1=dp[i][j-];
ll tmp2=dp[i-][j];
ll tmp3=(j>=i)?dp[i-][j-i]:;
tmp = tmp1+tmp2-tmp3;
dp[i][j] = getMod(tmp);
}
}
}
int main () {
init();
int T; scanf("%d",&T);
while (T--){
scanf("%d %d",&n,&k);
printf("%d\n",dp[n][k]);
}
return ;
}

51nod 1020 逆序排列 递推DP的更多相关文章

  1. 51nod 1020 逆序排列 DP

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1020 逆序排列——dp

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  3. 51nod 1020 逆序排列(dp,递推)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意:是中文题. 题解:很显然要设dp[i][j]表示 ...

  4. 51nod 1020 逆序排列

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...

  5. 1020 逆序排列(DP)

    1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...

  6. 51 Nod 1020 逆序排列

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  7. 【题解】逆序排列 [51nod1020]

    [题解]逆序排列 [51nod1020] 传送门:逆序排列 \([51nod1020]\) [题目描述] 共 \(T\) 组测试点,每一组给出 \(2\) 个整数 \(n\) 和 \(k\),在 \( ...

  8. 递推DP URAL 1167 Bicolored Horses

    题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状 ...

  9. 递推DP URAL 1017 Staircases

    题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转 ...

随机推荐

  1. QEMU IO事件处理框架

    Qemu IO事件处理框架 qemu是基于事件驱动的,在基于KVM的qemu模型中,每一个VCPU对应一个qemu线程,且qemu主线程负责各种事件的监听,这里有一个小的IO监听框架,本节对此进行介绍 ...

  2. 第五课 JAVA反射获取对象属性和方法

    package com.hero; import java.lang.reflect.Field; public class TestReflction5 { public static void m ...

  3. WebDriver 常用操作

    1 浏览器操作 2 窗口和弹框操作 3 cookies 操作 4 简单对象的定位 5 页面元素操作 6 鼠标事件 7 键盘事件 1 浏览器操作 #属性: driver.current_url #用于获 ...

  4. python基础班-淘宝-目录.txt

    卷 TOSHIBA EXT 的文件夹 PATH 列表卷序列号为 AE86-8E8DF:.│ python基础班-淘宝-目录.txt│ ├─1-1 Linux基础│ ├─01-课程简介│ │ 01-课程 ...

  5. 如何控制dedecms描述的长度?

    我们都知道调用dedecms的标题长度可以用titlelen='字符数',{dede:arclist titlelen='10'},表示标题长度为10个字符,也即是5个汉字.如果想要控制描述的调用长度 ...

  6. Muse UI 样式

    Muse UI的icon是国外网站,被墙了所以用这个网址的icon,在index.html文件中引入下面链接: <link rel="stylesheet" href=&qu ...

  7. Linux中Readlink命令

    原文地址:http://blog.csdn.net/liangxiaozhang/article/details/7356829 readlink是Linux系统中一个常用工具,主要用来找出符号链接所 ...

  8. CentOS忘记普通用户密码解决办法

    普通用户忘记密码 1.使用root用户登录系统,找到/etc/shadow文件. 2.找到用户名开头的那一行,例如我的用户名为pds,,以冒号为分割符,红色部分是密码加密部分 pds:$1$Civop ...

  9. !! A股历史平均市盈率走势图

    http://value500.com/PE.asp 一. A股历史平均市盈率走势图 *数据来源:上海证券交易所 分享到: 354 - 上海A股 深圳A股更新时间 2017年6月7日 2017年6月7 ...

  10. MySQL实现SQL Server排名函数

    最近在MySQL中遇到分组排序查询时,突然发现MySQL中没有row_number() over(partition by colname)这样的分组排序.并且由于MySQL中没有类似于SQL Ser ...