给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该类输入实例分为这个类。

KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

由此也说明了KNN算法的结果很大程度取决于K的选择。

在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

【机器学习】K近邻算法——多分类问题的更多相关文章

  1. 02-19 k近邻算法(鸢尾花分类)

    [TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...

  2. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

  3. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  4. 机器学习(1)——K近邻算法

    KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...

  5. 第4章 最基础的分类算法-k近邻算法

    思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...

  6. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  7. 1.K近邻算法

    (一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...

  8. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  9. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

随机推荐

  1. 高性能Web服务之lnmp架构应用

    传统上基于进程或线程模型架构的web服务通过每进程或每线程处理并发连接请求,这势必会在网络和I/O操作时产生阻塞,其另一个必然结果则是对内存或CPU的利用率低下.生成一个新的进程/线程需要事先备好其运 ...

  2. Android权限详解

    在Android的设计中,资源的访问或者网络连接,要得到这些服务都需要声明其访问权限,否则将无法正常工作.在Android中这样的权限有很多种,这里ATAAW.COM将各类访问权限一一罗列出来,供大家 ...

  3. 【struts2】名为dispatcher的ResultType

    1)基本使用 名称为“dispatcher”的ResultType,在struts-default.xml里的配置如下: <result-type name="dispatcher&q ...

  4. JQuery EasyUI combobox 省市两级联动

    表名:province  结构如下 CallIn.tpl 模板页 <select id="consult_province" name="consult_provi ...

  5. 微软的开源Sonar工具测试网站的性能和安全性

    Tips 原文作者:ABHIMANYU GHOSHAL 原文地址:Microsoft's open-source Sonar tool will test your site's performanc ...

  6. C#基础第九天-作业答案-储蓄账户(SavingAccount)和信用账户(CreditAccount)

    class Bank { //Dictionary<long,Account> dictionary=new Dictionary<long,Account>(); DataT ...

  7. 根据Rowkey从HBase中查询数据

    /** * @Title: queryData * @Description: 从HBase查询出数据 * @author xxxx * @param tableName * 表名 * @param ...

  8. 支付接口中常用的加密解密以及验签rsa,md5,sha

    一.常用加密类型分类 1.对称加密:采用单钥对信息进行加密和解密,即同一个秘钥既可以对信息进行加密,也可以进行解密.此类型称之为对称加密.特点速度快,常用于对大量数据信息或文件加密时使用.常用例子:D ...

  9. jQueryUI modal dialog does not show close button (x) JQueryUI和BootStrap混用时候,右上角关闭按钮显示不出图标的解决办法

    I had this problem and was able to resolve it with the declaration below. $.fn.bootstrapBtn = $.fn.b ...

  10. Linq to sql 消除列重复 去重复

    按user分组,取每组的第一个: var o = from r in xe.Descendants("customer")                    group r b ...