【刷题】UOJ #171 【WC2016】挑战NPC
小 N 最近在研究 NP 完全问题,小 O 看小 N 研究得热火朝天,便给他出了一道这样的题目:
有 \(n\) 个球,用整数 \(1\) 到 \(n\) 编号。还有 \(m\) 个筐子,用整数 \(1\) 到 \(m\) 编号。
每个筐子最多能装 3 个球。
每个球只能放进特定的筐子中。具体有 \(e\) 个条件,第 \(i\) 个条件用两个整数 \(vi\) 和 \(ui\) 描述,表示编号为 \(vi\) 的球可以放进编号为 \(ui\) 的筐子中。
每个球都必须放进一个筐子中。如果一个筐子内有不超过 \(1\) 个球,那么我们称这样的筐子为半空的。
求半空的筐子最多有多少个,以及在最优方案中,每个球分别放在哪个筐子中。
小 N 看到题目后瞬间没了思路,站在旁边看热闹的小 I 嘿嘿一笑:“水题!”
然后三言两语道出了一个多项式算法。
小 N 瞬间就惊呆了,三秒钟后他回过神来一拍桌子:
“不对!这个问题显然是 NP 完全问题,你算法肯定有错!”
小 I 浅笑:“所以,等我领图灵奖吧!”
小 O 只会出题不会做题,所以找到了你——请你对这个问题进行探究,并写一个程序解决此题。
输入格式
第一行包含 \(1\) 个正整数 \(T\) ,表示有 \(T\) 组数据。
对于每组数据,第一行包含 \(3\) 个正整数 \(n,m,e\) ,表示球的个数,筐子的个数和条件的个数。
接下来 \(e\) 行,每行包含 \(2\) 个整数 \(vi,ui\) ,表示编号为 \(vi\) 的球可以放进编号为 \(ui\) 的筐子。
输出格式
对于每组数据,先输出一行,包含一个整数,表示半空的筐子最多有多少个。
然后再输出一行,包含 \(n\) 个整数 \(p1,p2,…,pn\) ,相邻整数之间用空格隔开,表示一种最优解。其中 \(pi\) 表示编号为 \(i\) 的球放进了编号为 \(pi\) 的筐子。如果有多种最优解,可以输出其中任何一种。
样例一
input
1
4 3 6
1 1
2 1
2 2
3 2
3 3
4 3
output
2
1 2 3 3
样例二
见样例数据下载。
限制与约定
对于所有数据,\(T≤5\) ,\(1≤n≤3m\) 。保证 \(1≤vi≤n,1≤ui≤m\) ,且不会出现重复的条件。
保证至少有一种合法方案,使得每个球都放进了筐子,且每个筐子内球的个数不超过 \(3\) 。
各测试点满足以下约定:
| 测试点编号 | $m$ | 约定 |
|---|---|---|
| $1$ | $\leq 10$ | $n \leq 20,e \leq 25$ |
| $2$ | ||
| $3$ | $\leq 100$ | $e=nm$ |
| $4$ | 存在方案使得有 $m$ 个半空的筐子 | |
| $5$ | 不存在有半空的筐子的方案 | |
| $6$ | ||
| $7$ | 无 | |
| $8$ | ||
| $9$ | ||
| $10$ |
时间限制: 1s
空间限制: 256MB
题解
思路极其巧妙
我们把一个框分成三个点,并且把其中两个点连上一条边
那么一个球与一个框相连就变成了这样:

我们对这个图跑一遍带花树
那么如果只有一个球放进一个框中,这个框对应的三个点就只会有一个被匹配;而剩下的两个点因为有边相连,所以一定会相互匹配
也就是说,半空的框分出的三个点中一定在两个点相互匹配
因为题目保证球全部可以放进框中,所以匹配数一定大于等于 \(n\) ,而多出来的就是这些框分出的点自己的匹配
我们只要得出有多少自己的匹配,就知道有多少半空的框,用匹配的结果减去 \(n\) 就是答案了
要使答案最大,那么匹配的结果越大越好,所以就是跑带花树
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define ball(a,b) ((a-1)*3+b+n)
const int MAXN=300+10,MAXM=100+10,inf=0x3f3f3f3f;
int e,n,m,fa[MAXN<<1],beg[MAXN<<1],level[MAXN<<1],to[MAXN*MAXN*8],nex[MAXN*MAXN*8],link[MAXN<<1],pre[MAXN<<1],clk,vis[MAXN<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
}
inline int LCA(int u,int v)
{
for(clk++;;std::swap(u,v))
if(u)
{
u=found(u);
if(level[u]==clk)return u;
level[u]=clk;u=pre[link[u]];
}
}
inline void blossom(int u,int v,int lca)
{
while(found(u)!=lca)
{
pre[u]=v,v=link[u];
if(vis[v]==2)vis[v]=1,q.push(v);
if(found(u)==u)fa[u]=lca;
if(found(v)==v)fa[v]=lca;
u=pre[v];
}
}
inline int bfs(int s)
{
for(register int i=1;i<=n+3*m;++i)fa[i]=i;
memset(pre,0,sizeof(pre));
memset(vis,0,sizeof(vis));
while(!q.empty())q.pop();
vis[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
{
if(found(x)==found(to[i])||vis[to[i]]==2)continue;
if(!vis[to[i]])
{
vis[to[i]]=2;
pre[to[i]]=x;
if(!link[to[i]])
{
for(register int p=to[i],las;p;p=las)las=link[pre[p]],link[p]=pre[p],link[pre[p]]=p;
return 1;
}
vis[link[to[i]]]=1;q.push(link[to[i]]);
}
else
{
int lca=LCA(x,to[i]);
blossom(x,to[i],lca);blossom(to[i],x,lca);
}
}
}
return 0;
}
int main()
{
static int T,l,ans;
read(T);
while(T--)
{
e=ans=0;
memset(beg,0,sizeof(beg));
memset(link,0,sizeof(link));
read(n);read(m);read(l);
for(register int i=1;i<=l;++i)
{
int u,v;read(u);read(v);
for(register int k=1;k<=3;++k)insert(u,ball(v,k));
}
for(register int i=1;i<=m;++i)insert(ball(i,1),ball(i,3));
for(register int i=1;i<=n+3*m;++i)
if(!link[i])ans+=bfs(i);
write(ans-n,'\n');
for(register int i=1;i<=n;++i)write((link[i]-n+2)/3,' ');
puts("");
}
return 0;
}
【刷题】UOJ #171 【WC2016】挑战NPC的更多相关文章
- [WC2016]挑战NPC(一般图最大匹配)
[WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如 ...
- [bzoj4405][wc2016]挑战NPC
来自FallDream的博客,未经允许,请勿转载,谢谢. 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个球,用整数1到n编号.还有m个筐子,用整数1到m编号. ...
- BZOJ 4405 [wc2016]挑战NPC 带花树 一般图最大匹配
https://www.lydsy.com/JudgeOnline/problem.php?id=4405 这道题大概就是考场上想不出来,想出来也调不出来的题. 把每个桶拆成三个互相有边的点,每个球向 ...
- [UOJ171][WC2016]挑战NPC
uoj luogu bzoj sol 你可以列一个表格. 一个框子里放球的数量 0 1 2 3 对"半空框子"数量的贡献 1 1 0 0 把一个框子拆三个点.两两之间连边. 会发现 ...
- [BZOJ]4405: [wc2016]挑战NPC(带花树)
带花树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...
- [WC2016]挑战NPC
Sol 这做法我是想不到\(TAT\) 每个筐子拆成三个相互连边 球向三个筐子连边 然后跑一般图最大匹配 这三个筐子间最多有一个匹配 那么显然每个球一定会放在一个筐子里,一定有一个匹配 如果筐子间有匹 ...
- bzoj 4405: [wc2016]挑战NPC【带花树】
把每个筐子拆成3个,分别表示放0/1/2个,然后把这三个点两两连起来,每一个可以放在筐里的球都想这三个点连边. 这样可以发现,放0个球的时候,匹配数为1,放1个球的时候,匹配数为1,放2个球的时候,匹 ...
- 刷题[极客大挑战 2019]HardSQL
解题思路 打开是一个登陆框,考点sql注入了,先正常尝试一波 发现居然是get类型 输入and发现有waf过滤,那fuzz一波看看过滤了什么 fuzz union被过滤,并且绕过union的几种方法同 ...
- 「WC2016」挑战NPC
「WC2016」挑战NPC 解题思路 这个题建图非常厉害,带花树什么的只会口胡根本写不动,所以我写了机房某大佬教我的乱搞. 考虑把一个筐 \(x\) 拆成 \(x1,x2,x3\) 三个点,且这三个点 ...
- 【BZOJ4405】【WC2016】挑战NPC(带花树)
[BZOJ4405][WC2016]挑战NPC(带花树) 题面 BZOJ 洛谷 Uoj Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个 ...
随机推荐
- DBoW2 词袋模型笔记
DBoW算法用于解决Place Recognition问题,ORB-SLAM,VINS-Mono等SLAM系统中的闭环检测模块均采用了该算法.来源于西班牙的Juan D. Tardos课题组. 主要是 ...
- 利尔达NB-IOT模块烧写固件的步骤
1. NB-IOT是3个内核,用户开发的是A核,就是应用核,用Eclipse软件打开软件SDK之后,会生成一个bin文件(应用核的bin),现在就是要把bin文件合并到包里面(3个内核的bin),一起 ...
- JQuery表单验证插件
使用jQuery的validate插件实现一个简单的表单验证 <!DOCTYPE html> <html> <head> <meta charset=&quo ...
- 文件同步 单向rsync 双向unison 监控inotifywait 免密登录
1.负载均衡中文件同步必不可少,我这边选择rsync来实现文件同步 rsync同步文件机制更适用于单向文件同步,可配合unison实现双向同步功能. 实现同步的两种方法 一:ssh方法 rsync - ...
- node环境清空控制台的代码
process.stdout.write( process.platform === 'win32' ? '\x1B[2J\x1B[0f' : '\x1B[2J\x1B[3J\x1B[H' );
- mysql面试常见题目3
三十六大 冯唐 春水初生, 春林初盛, 春风十里,不如你. 秋风落叶, 秋雨绵绵, 愁心上秋,只为你. 某个员工信息表结构和数据如下: id name dept salary edlevel hire ...
- python爬虫基础之一(爬淘宝)
没想到python如此强大, 今天看一会视频学会了一段python爬虫 这就是我今天学到的内容爬去淘宝网关于书包的一些信息,包括价格, #coding=utf-8 import requests#导入 ...
- 【wx:if】小程序条件渲染的使用说明
语法,以view为例: <view xw:if="{{条件}}">aaaa</view> <view xw:elif="{{条件}}&quo ...
- 373. Partition Array by Odd and Even【LintCode java】
Description Partition an integers array into odd number first and even number second. Example Given ...
- String和StringBuffer以及StringBuilder的区别
今天在读<java编程思想>的时间,在看到String和StringBuffer以及StringBuffer这三个类的时间,做一个随笔小结,为自己的面试做好准备! 一:String,Str ...