[洛谷P4735]最大异或和
题目大意:有一串初始长度为$n$的序列$a$,有两种操作:
- $A\;x:$在序列末尾加一个数$x$
- $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$,使得: $a_p\oplus a_{p+1}\oplus\dots\oplus a_n\oplus x$最大,输出最大是多少。
题解:把序列前缀和,变成$S$,就变成了在$[l-2,r-1]$区间内找一个数$S_p$,使得$S_p\oplus S_n\oplus x$最大。可持久化$trie$
卡点:无
C++ Code:
#include <cstdio>
#include <iostream>
#define M 24
#define maxn 600010
#define N (maxn * (M + 1)) int n, m;
int __root__[maxn], *root = __root__ + 1, idx;
int nxt[N][2], V[N], sum;
void insert(int &rt, int x, int dep) {
nxt[++idx][0] = nxt[rt][0], nxt[idx][1] = nxt[rt][1], V[idx] = V[rt] + 1, rt = idx;
if (!~dep) return ;
int tmp = x >> dep & 1;
insert(nxt[rt][tmp], x, dep - 1);
}
int query(int x, int L, int R) {
int res = 0;
for (int i = M; ~i; i--) {
int tmp = x >> i & 1;
if (V[nxt[R][!tmp]] - V[nxt[L][!tmp]]) L = nxt[L][!tmp], R = nxt[R][!tmp], res |= 1 << i;
else L = nxt[L][tmp], R = nxt[R][tmp];
}
return res;
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
insert(root[0], 0, M);
for (int i = 1, x; i <= n; i++) {
std::cin >> x;
insert(root[i] = root[i - 1], sum ^= x, M);
}
while (m --> 0) {
char op;
int l, r, x;
std::cin >> op >> l;
if (op == 'A') {
root[n + 1] = root[n];
insert(root[++n], sum ^= l, M);
} else {
std::cin >> r >> x;
std::cout << query(x ^ sum, root[l - 2], root[r - 1]) << '\n';
}
}
return 0;
}
[洛谷P4735]最大异或和的更多相关文章
- Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)
题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...
- 洛谷 P4735 最大异或和 解题报告
P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的 ...
- 【题解】洛谷P4735最大异或和
学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...
- 洛谷 P3359 改造异或树
题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...
- 【洛谷P4735】最大异或和
题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...
- 【洛谷 P4735】 最大异或和 (可持久化Trie)
题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直 ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- 【洛谷P3917】异或序列
题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...
- 【洛谷P4462】异或序列
题目大意:给定一个长度为 N 的序列,有 M 组询问,每组询问查询区间 [l,r] 内异或和等于给定常数 K 的区间组数. 题解:对于异或和问题,一般先进行前缀和处理,转化为两个点的的关系.因此,经过 ...
随机推荐
- sqlite helper
//-------------------------------------------------------------------------- // // Copyright (c) BUS ...
- 学习Drupal一个容易被忽视的问题
刚刚修复了一个问题,一个非常小的问题,但我花了2-3小时才查明原因并修复. 总结下来我忽视了一个非常常见的问题或者没有养成一个好的习惯. 问题现象是:论坛发帖,只有editor以上权限的人可以发帖,也 ...
- vim程序员加强功能
1.折叠 1.1折叠的方式有六种 manual:以标准的vim结构定义折叠跨越的范围,类似移动命令 indent:折叠与折叠的层次,对应于文本的缩排与 ...
- 41. Maximum Subarray
Description Given an array of integers, find a contiguous subarray which has the largest sum. The su ...
- [SHELL]shell中变量的使用
1.输出变量 : #! /bin/bash my_var=BOB echo $my_var echo "hi,$my_var" echo "the price is \$ ...
- Java基础知识:Java实现Map集合二级联动1
Java实现Map集合二级联动 Map集合可以保存键值映射关系,这非常适合本实例所需要的数据结构,所有省份信息可以保存为Map集合的键,而每个键可以保存对应的城市信息,本实例就是利用Map集合实现了省 ...
- dotnetframe的清理工具
微软的产品一向不敢恭维,卸载都没有办法卸载干净,卸载又慢又不彻底,dotnet被我卸载之后还有注册表残留以至于无法重新安装. .NET Framework Cleanup Tool真的很好用,全部版本 ...
- clientHeight、offsetHeight、scrollHeight、clientTop、scrollTop、offsetTop的对比
首先,这些都是dom节点的属性. 高宽属性:clientHeight:html元素不含border的高度. 对于box-sizing不同的情况,有些地方需要注意一下.当box-sizing为conte ...
- Dictionary tabPage使用
public override bool AccptChange() { //if (oldvalue == null || oldvalue.Count <= 0) //{ // return ...
- Zen Coding && Emmet-Sublime 安装
Sublime Text 插件之:Emmet,旧版称:ex-Zen Coding 更名之后增加了CSS3和HTML5许多新特性.项目地址也从 code.google 移 github. 安装: Pac ...