题目大意:有一串初始长度为$n$的序列$a$,有两种操作:

  1. $A\;x:$在序列末尾加一个数$x$
  2. $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$,使得: $a_p\oplus a_{p+1}\oplus\dots\oplus a_n\oplus x$最大,输出最大是多少。

题解:把序列前缀和,变成$S$,就变成了在$[l-2,r-1]$区间内找一个数$S_p$,使得$S_p\oplus S_n\oplus x$最大。可持久化$trie$

卡点:

C++ Code:

#include <cstdio>
#include <iostream>
#define M 24
#define maxn 600010
#define N (maxn * (M + 1)) int n, m;
int __root__[maxn], *root = __root__ + 1, idx;
int nxt[N][2], V[N], sum;
void insert(int &rt, int x, int dep) {
nxt[++idx][0] = nxt[rt][0], nxt[idx][1] = nxt[rt][1], V[idx] = V[rt] + 1, rt = idx;
if (!~dep) return ;
int tmp = x >> dep & 1;
insert(nxt[rt][tmp], x, dep - 1);
}
int query(int x, int L, int R) {
int res = 0;
for (int i = M; ~i; i--) {
int tmp = x >> i & 1;
if (V[nxt[R][!tmp]] - V[nxt[L][!tmp]]) L = nxt[L][!tmp], R = nxt[R][!tmp], res |= 1 << i;
else L = nxt[L][tmp], R = nxt[R][tmp];
}
return res;
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m;
insert(root[0], 0, M);
for (int i = 1, x; i <= n; i++) {
std::cin >> x;
insert(root[i] = root[i - 1], sum ^= x, M);
}
while (m --> 0) {
char op;
int l, r, x;
std::cin >> op >> l;
if (op == 'A') {
root[n + 1] = root[n];
insert(root[++n], sum ^= l, M);
} else {
std::cin >> r >> x;
std::cout << query(x ^ sum, root[l - 2], root[r - 1]) << '\n';
}
}
return 0;
}

  

[洛谷P4735]最大异或和的更多相关文章

  1. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  2. 洛谷 P4735 最大异或和 解题报告

    P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的 ...

  3. 【题解】洛谷P4735最大异或和

    学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...

  4. 洛谷 P3359 改造异或树

    题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...

  5. 【洛谷P4735】最大异或和

    题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...

  6. 【洛谷 P4735】 最大异或和 (可持久化Trie)

    题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直 ...

  7. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  8. 【洛谷P3917】异或序列

    题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...

  9. 【洛谷P4462】异或序列

    题目大意:给定一个长度为 N 的序列,有 M 组询问,每组询问查询区间 [l,r] 内异或和等于给定常数 K 的区间组数. 题解:对于异或和问题,一般先进行前缀和处理,转化为两个点的的关系.因此,经过 ...

随机推荐

  1. 阿里otter使用问题汇总

    最近在使用otter做为和表从库.(100个分表太难查询了) user_00,user_01...user_99 => user_all 1.问题DDL语句不能执行(exception:setl ...

  2. svn 撤销 已提交的修改

    1.保证我们拿到的是最新代码:  svn update  假设最新版本号是28.  2.然后找出要回滚的确切版本号:  svn log [something]  假设根据svn log日志查出要回滚的 ...

  3. libevent学习二(Working with an event loop)

    Runing the loop #define EVLOOP_ONCE             0x01 #define EVLOOP_NONBLOCK         0x02 #define EV ...

  4. Spring学习记录-Java 11运行eureka-server报javax.xml.bind.JAXBContext not present错

    在pom.xml加入依赖就行 <dependency> <groupId>org.glassfish.jaxb</groupId> <artifactId&g ...

  5. Jmeter使用之:高效组织接口自动化用例技巧

    Jmeter怎么使用的文章多如牛毛,但怎么组织好测试用例,则几乎很难看到.在本文,我将把Jmeter下怎么组织测试用例的几点心得分享给大家,希望能给你一些帮助或启示. 1.善用“逻辑控制器”中的“简单 ...

  6. keepalived+nginx实现高可用+tomcat

    1.keepalived的yum安装 安装依赖包[root@localhost ~]# yum install -y curl gcc openssl-devel libnl3-devel net-s ...

  7. TPO-10 C2 Return a literature book

    TPO-10 C2 Return a literature book 第 1 段 1.Listen to a conversation between a student and an employe ...

  8. UniMelb Comp30022 IT Project (Capstone) - 2.Vuforia in Unity

    2 Vuforia in Unity Tutorial: https://www.youtube.com/watch?v=X6djed8e4n0&t=213s Preparation: Dow ...

  9. Struts2(八.添加用户多张照片实现文件上传功能)

    1.modify.jsp 在modify.jsp修改用户信息页面实现文件上传,添加用户照片的功能 如果是文件上传,method必须是post,必须指定enctype <form method=& ...

  10. Python全栈 Web(边框、盒模型、背景)

    原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...