PANDAS 数据合并与重塑(join/merge篇)
pandas中也常常用到的join 和merge方法
merge
pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效。
和SQL语句的对比可以看这里
merge的参数
on:列名,join用来对齐的那一列的名字,用到这个参数的时候一定要保证左表和右表用来对齐的那一列都有相同的列名。
left_on:左表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。
right_on:右表对齐的列,可以是列名,也可以是和dataframe同样长度的arrays。
left_index/ right_index: 如果是True的haunted以index作为对齐的key
how:数据融合的方法。
sort:根据dataframe合并的keys按字典顺序排序,默认是,如果置false可以提高表现。
merge的默认合并方法:
merge用于表内部基于 index-on-index 和 index-on-column(s) 的合并,但默认是基于index来合并。
- 1
- 2
- 3
1.1 复合key的合并方法
使用merge的时候可以选择多个key作为复合可以来对齐合并。
- 1
- 2
1.1.1 通过on指定数据合并对齐的列
In [41]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
....: 'key2': ['K0', 'K1', 'K0', 'K1'],
....: 'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3']})
....:
In [42]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
....: 'key2': ['K0', 'K0', 'K0', 'K0'],
....: 'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']})
....:
In [43]: result = pd.merge(left, right, on=['key1', 'key2'])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
没有指定how的话默认使用inner方法。
how的方法有:
left
只保留左表的所有数据
In [44]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])
- 1

- 1
right
只保留右表的所有数据
In [45]: result = pd.merge(left, right, how='right', on=['key1', 'key2'])
- 1

- 1
outer
保留两个表的所有信息
In [46]: result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
- 1

- 1
inner
只保留两个表中公共部分的信息
In [47]: result = pd.merge(left, right, how='inner', on=['key1', 'key2'])
- 1

- 1
1.2 indicator
v0.17.0 版本的pandas开始还支持一个indicator的参数,如果置True的时候,输出结果会增加一列 ’ _merge’。_merge列可以取三个值
- left_only 只在左表中
- right_only 只在右表中
- both 两个表中都有
1.3 join方法
dataframe内置的join方法是一种快速合并的方法。它默认以index作为对齐的列。
1.3.1 how 参数
join中的how参数和merge中的how参数一样,用来指定表合并保留数据的规则。
具体可见前面的 how 说明。
1.3.2 on 参数
在实际应用中如果右表的索引值正是左表的某一列的值,这时可以通过将 右表的索引 和 左表的列 对齐合并这样灵活的方式进行合并。
ex 1
In [59]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
....: 'B': ['B0', 'B1', 'B2', 'B3'],
....: 'key': ['K0', 'K1', 'K0', 'K1']})
....:
In [60]: right = pd.DataFrame({'C': ['C0', 'C1'],
....: 'D': ['D0', 'D1']},
....: index=['K0', 'K1'])
....:
In [61]: result = left.join(right, on='key')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
1.3.3 suffix后缀参数
如果和表合并的过程中遇到有一列两个表都同名,但是值不同,合并的时候又都想保留下来,就可以用suffixes给每个表的重复列名增加后缀。
In [79]: result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])
- 1
- 2

- 1
- 2
* 另外还有lsuffix 和 rsuffix分别指定左表的后缀和右表的后缀。
1.4 组合多个dataframe
一次组合多个dataframe的时候可以传入元素为dataframe的列表或者tuple。一次join多个,一次解决多次烦恼~
In [83]: right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])
In [84]: result = left.join([right, right2])
- 1
- 2
- 3

- 1
- 2
- 3
1.5 更新表的nan值
1.5.1 combine_first
如果一个表的nan值,在另一个表相同位置(相同索引和相同列)可以找到,则可以通过combine_first来更新数据
1.5.2 update
如果要用一张表中的数据来更新另一张表的数据则可以用update来实现
1.5.3 combine_first 和 update 的区别
使用combine_first会只更新左表的nan值。而update则会更新左表的所有能在右表中找到的值(两表位置相对应)。
示例代码参考来源——官网
PANDAS 数据合并与重塑(join/merge篇)的更多相关文章
- 【转】PANDAS 数据合并与重塑(concat篇)
转自:http://blog.csdn.net/stevenkwong/article/details/52528616 1 concat concat函数是在pandas底下的方法,可以将数据根据不 ...
- PANDAS 数据合并与重塑(concat篇)
转自:http://blog.csdn.net/stevenkwong/article/details/52528616
- 【学习】数据规整化:清理、转换、合并、重塑【pandas】
这一部分非常关键! 数据分析和建模方面的大量编程工作都是用在数据准备上的:加载.清理.转换以及重塑. 1.合并数据集 pandas对象中的数据可以通过 一些内置的方式进行合并: pandas.merg ...
- 利用Python进行数据分析-Pandas(第五部分-数据规整:聚合、合并和重塑)
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是panda ...
- pandas(七)数据规整化:清理、转换、合并、重塑之合并数据集
pandas对象中的数据可以通过一些内置的方式进行合并: pandas.merge 可根据一个或多个键将不同的DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- Python之数据规整化:清理、转换、合并、重塑
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象 ...
- 利用Python进行数据分析 第8章 数据规整:聚合、合并和重塑.md
学习时间:2019/11/03 周日晚上23点半开始,计划1110学完 学习目标:Page218-249,共32页:目标6天学完(按每页20min.每天1小时/每天3页,需10天) 实际反馈:实际XX ...
- 利用Python进行数据分析_Pandas_数据清理、转换、合并、重塑
1 合并数据集 pandas.merge pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, le ...
随机推荐
- 一个用于将sql脚本转换成实体类的js代码
以前写过一段C#,苦于编译才能用.这样的小工具最好是用脚本语言来编写,易于执行,也易于修改. js 代码 convert.js ------------------------------------ ...
- 记一则Linux病毒的处理
今天某项目经理反馈学校的某台服务器不停的向外发包,且CPU持续100%,远程登录后查看发现有一长度为10的随机字符串进程,kill掉,会重新生成另外长度为10的字符串进程.删除文件也会重复生成,非常痛 ...
- C语言-二进制技巧
打开位: flags = flags | MASK 要打开的位为 1 关闭位: flags = flags & ~MASK 要关闭的位为 1 转置位: flags = flags ^ MASK ...
- nodejs express route 的用法
express 中文社区:http://expressjs.jser.us/community.html nodejs express route 的用法 1. 首先是最基本的用法. 1 2 3 4 ...
- 区别原生chrome 和以chrome为内核的360浏览器
function isChrome360() { if( navigator.userAgent.toLowerCase().indexOf('chrome') > -1 ) { var des ...
- sql关于group by之后把每一条记录的详情的某个字段值合并提取的方法
在利用group by写了统计语句之后,还有一个查看每一个记录详情的需求, 首先想到的是根据group by的条件去拼接查询条件, 但是条件有点多,拼接起来不仅麻烦,还容易出错, 所以想到要在grou ...
- 物联网通信协议——比较-MQTT、 DDS、 AMQP、XMPP、 JMS、 REST、 CoAP
物联网通信协议——比较-MQTT. DDS. AMQP.XMPP. JMS. REST. CoAP AMQP & MQTT & DDS (https://www.youtube.c ...
- 使用结构(C# 编程指南)
struct 类型适于表示 Point.Rectangle 和 Color 等轻量对象. 尽管使用自动实现的属性将一个点表示为类同样方便,但在某些情况下使用结构更加有效. 例如,如果声明一个 1000 ...
- FIFO、LRU、OPT页面调度算法及样例
网上非常多介绍3种页面置换算法的样例和过程是不对的, 本文依据<操作系统概念>第七版对三种算法做介绍,并给出正确的样例以验证算法. 一.FIFO先进先出页面置换算法,创建一个FIFO队列来 ...
- python oop面向对象笔记
#coding:utf-8 class Person(object): def __init__(self,name,wage): self.name = name self.wage = wage ...