前言

我们在实际工作中,有很多分页的需求,商品分页、订单分页等,在MySQL中我们可以使用limit,那么在Elasticsearch中我们可以使用什么呢?

ES 分页搜索一般有三种方案,from + size、search after、scroll api,这三种方案分别有自己的优缺点,下面将进行分别介绍。

使用的数据是kibana中的kibana_sample_data_flights

from + size

这是ES分页中最常用的一种方式,与MySQL类似,from指定起始位置,size指定返回的文档数。

GET kibana_sample_data_flights/_search
{
"from": 10,
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
}
}
]
}

这个例子中查询航班中,目的地的天气是晴朗的,并且按时间进行排序。

使用简单,且默认的深度分页限制是1万,from + size 大于 10000会报错,可以通过index.max_result_window参数进行修改。

{
"error": {
"root_cause": [
{
"type": "query_phase_execution_exception",
"reason": "Result window is too large, from + size must be less than or equal to: [10000] but was [10001]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting."
}
],
"type": "search_phase_execution_exception",
"reason": "all shards failed",
"phase": "query",
"grouped": true,
"failed_shards": [
{
"shard": 0,
"index": "kibana_sample_data_flights",
"node": "YRQNOSQqS-GgSo1TSzlC8A",
"reason": {
"type": "query_phase_execution_exception",
"reason": "Result window is too large, from + size must be less than or equal to: [10000] but was [10001]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting."
}
}
]
},
"status": 500
}

这种分页方式,在分布式的环境下的深度分页是有性能问题的,一般不建议用这种方式做深度分页,可以用下面将要介绍的两种方式。

理解为什么深度分页是有问题的,我们可以假设在一个有 5 个主分片的索引中搜索。 当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。

现在假设我们请求第 1000 页,结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。 然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。

可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。

search after

search after 利用实时有游标来帮我们解决实时滚动的问题。第一次搜索时需要指定 sort,并且保证值是唯一的,可以通过加入 _id 保证唯一性。

GET kibana_sample_data_flights/_search
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
]
}

在返回的结果中,最后一个文档有类似下面的数据,由于我们排序用的是两个字段,返回的是两个值。

"sort" : [
1614561419000,
"6FxZJXgBE6QbUWetnarH"
]

第二次搜索,带上这个sort的信息即可,如下

GET kibana_sample_data_flights/_search
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
],
"search_after": [
1614561419000,
"6FxZJXgBE6QbUWetnarH"
]
}

scroll api

创建一个快照,有新的数据写入以后,无法被查到。每次查询后,输入上一次的 scroll_id。目前官方已经不推荐使用这个API了,使用search_after即可。

GET kibana_sample_data_flights/_search?scroll=1m
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
]
}

在返回的数据中,有一个_scroll_id字段,下次搜索的时候带上这个数据,并且使用下面的查询语句。

POST _search/scroll
{
"scroll" : "1m",
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAA6UWWVJRTk9TUXFTLUdnU28xVFN6bEM4QQ=="
}

上面的scroll指定搜索上下文保留的时间,1m代表1分钟,还有其他时间可以选择,有d、h、m、s等,分别代表天、时、分钟、秒。

搜索上下文有过期自动删除,但如果自己知道什么时候该删,可以自己手动删除,减少资源占用。

DELETE /_search/scroll
{
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAA6UWWVJRTk9TUXFTLUdnU28xVFN6bEM4QQ=="
}

总结

from + size 的优点是简单,缺点是在深度分页的场景下系统开销比较大。

search after 可以实时高效的进行分页查询,但是它只能做下一页这样的查询场景,不能随机的指定页数查询。

scroll api 方案也很高效,但是它基于快照,不能用在实时性高的业务场景,且官方已不建议使用。

参考资料

Elasticsearch 分页查询的更多相关文章

  1. elasticsearch 分页查询实现方案——Top K+归并排序

    elasticsearch 分页查询实现方案 1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10,注意:size的大小不能超 ...

  2. Elasticsearch——分页查询From&Size VS scroll

    Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如果要实现分页查询该怎么办呢? 更多内容参考Elasticsearch资料汇总 按照一般的查询 ...

  3. ElasticSearch—分页查询

    ElasticSearch查询—分页查询详解 Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如何实现分页查询呢? 按照一般的查询流程来说,如 ...

  4. elasticsearch 分页查询实现方案

    1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10, 注意:size的大小不能超过index.max_result_wind ...

  5. ElasticSearch——分页查询

    前言 ElasticSearch实现分页查询,有3种方式,他们在数据查询中各自占据着不同的优势,因此在搜索引擎的数据分页过程中,如何更好地利用各自的优势来进行数据查询是一个非常重要的过程. 传统分页( ...

  6. Elasticsearch分页查询

    global index global CLIENT index = "guajibao-ipused-2019.10.13" CLIENT = Elasticsearch(hos ...

  7. Elasticsearch教程(九) elasticsearch 查询数据 | 分页查询

    Elasticsearch  的查询很灵活,并且有Filter,有分组功能,还有ScriptFilter等等,所以很强大.下面上代码: 一个简单的查询,返回一个List<对象> ..    ...

  8. elasticsearch查询之大数据集分页查询

    一. 要解决的问题 search命中的记录特别多,使用from+size分页,直接触发了elasticsearch的max_result_window的最大值: { "error" ...

  9. Elasticsearch from/size-浅分页查询-深分页 scroll-深分页search_after深度查询区别使用及应用场景

    Elasticsearch调研深度查询 1.from/size 浅分页查询 一般的分页需求我们可以使用from和size的方式实现,但是这种的分页方式在深分页的场景下应该是避免使用的.深分页的页次增加 ...

随机推荐

  1. Learning JavaScript with MDN (call, apply, bind)

    Learning JavaScript with MDN (call, apply, bind) call, apply, bind Object.prototype.toString() 检测 js ...

  2. React Learning Paths

    React Learning Paths React Expert React in Action The assessment may cover: Components Events and Bi ...

  3. CSS Architecture & CSS Design Patterns

    CSS Architecture & CSS Design Patterns BEM Block, Element, Modifier https://en.bem.info/methodol ...

  4. CSS3 & transition & animation

    CSS3 & transition & animation https://developer.mozilla.org/en-US/docs/Web/CSS/transition-ti ...

  5. linux bash shell & lsof & grep & ps

    linux bash shell & lsof & grep & ps lsof list all open files # lsof & grep $ lsof -P ...

  6. 消息中间件选型分析:从 Kafka 与 RabbitMQ 的对比看全局

    本文转载自消息中间件选型分析:从 Kafka 与 RabbitMQ 的对比看全局 前言 消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布 ...

  7. 用OkHttpGo和FastJson获取OneNET云平台数据(解析嵌套数组)

    JSON数据格式有两种,一种是 { } 大括号表示的JSON对象,一种是 [ ] 中括号表示的JSON数组.从OneNET获取到的数组是这样的,并用Json解析网址查看https://jsonform ...

  8. Mysql训练:第二高的薪水(IFNULL,OFFSET,LIMIT)

    编写一个 SQL 查询,获取 Employee 表中第二高的薪水(Salary) . +----+--------+ | Id | Salary | +----+--------+ | 1 | 100 ...

  9. 企业安全_DNS流量监控的技术选型

    方案1 Windows server n ---> packbeat ---> logstash ---> kafka | ┗ ---------> elasticsearch ...

  10. 剑指 Offer 13. 机器人的运动范围 + 深搜 + 递归

    剑指 Offer 13. 机器人的运动范围 题目链接 package com.walegarrett.offer; /** * @Author WaleGarrett * @Date 2020/12/ ...