前言

我们在实际工作中,有很多分页的需求,商品分页、订单分页等,在MySQL中我们可以使用limit,那么在Elasticsearch中我们可以使用什么呢?

ES 分页搜索一般有三种方案,from + size、search after、scroll api,这三种方案分别有自己的优缺点,下面将进行分别介绍。

使用的数据是kibana中的kibana_sample_data_flights

from + size

这是ES分页中最常用的一种方式,与MySQL类似,from指定起始位置,size指定返回的文档数。

GET kibana_sample_data_flights/_search
{
"from": 10,
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
}
}
]
}

这个例子中查询航班中,目的地的天气是晴朗的,并且按时间进行排序。

使用简单,且默认的深度分页限制是1万,from + size 大于 10000会报错,可以通过index.max_result_window参数进行修改。

{
"error": {
"root_cause": [
{
"type": "query_phase_execution_exception",
"reason": "Result window is too large, from + size must be less than or equal to: [10000] but was [10001]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting."
}
],
"type": "search_phase_execution_exception",
"reason": "all shards failed",
"phase": "query",
"grouped": true,
"failed_shards": [
{
"shard": 0,
"index": "kibana_sample_data_flights",
"node": "YRQNOSQqS-GgSo1TSzlC8A",
"reason": {
"type": "query_phase_execution_exception",
"reason": "Result window is too large, from + size must be less than or equal to: [10000] but was [10001]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting."
}
}
]
},
"status": 500
}

这种分页方式,在分布式的环境下的深度分页是有性能问题的,一般不建议用这种方式做深度分页,可以用下面将要介绍的两种方式。

理解为什么深度分页是有问题的,我们可以假设在一个有 5 个主分片的索引中搜索。 当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。

现在假设我们请求第 1000 页,结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。 然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。

可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。

search after

search after 利用实时有游标来帮我们解决实时滚动的问题。第一次搜索时需要指定 sort,并且保证值是唯一的,可以通过加入 _id 保证唯一性。

GET kibana_sample_data_flights/_search
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
]
}

在返回的结果中,最后一个文档有类似下面的数据,由于我们排序用的是两个字段,返回的是两个值。

"sort" : [
1614561419000,
"6FxZJXgBE6QbUWetnarH"
]

第二次搜索,带上这个sort的信息即可,如下

GET kibana_sample_data_flights/_search
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
],
"search_after": [
1614561419000,
"6FxZJXgBE6QbUWetnarH"
]
}

scroll api

创建一个快照,有新的数据写入以后,无法被查到。每次查询后,输入上一次的 scroll_id。目前官方已经不推荐使用这个API了,使用search_after即可。

GET kibana_sample_data_flights/_search?scroll=1m
{
"size": 2,
"query": {
"match": {
"DestWeather": "Sunny"
}
},
"sort": [
{
"timestamp": {
"order": "asc"
},
"_id": {
"order": "desc"
}
}
]
}

在返回的数据中,有一个_scroll_id字段,下次搜索的时候带上这个数据,并且使用下面的查询语句。

POST _search/scroll
{
"scroll" : "1m",
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAA6UWWVJRTk9TUXFTLUdnU28xVFN6bEM4QQ=="
}

上面的scroll指定搜索上下文保留的时间,1m代表1分钟,还有其他时间可以选择,有d、h、m、s等,分别代表天、时、分钟、秒。

搜索上下文有过期自动删除,但如果自己知道什么时候该删,可以自己手动删除,减少资源占用。

DELETE /_search/scroll
{
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAA6UWWVJRTk9TUXFTLUdnU28xVFN6bEM4QQ=="
}

总结

from + size 的优点是简单,缺点是在深度分页的场景下系统开销比较大。

search after 可以实时高效的进行分页查询,但是它只能做下一页这样的查询场景,不能随机的指定页数查询。

scroll api 方案也很高效,但是它基于快照,不能用在实时性高的业务场景,且官方已不建议使用。

参考资料

Elasticsearch 分页查询的更多相关文章

  1. elasticsearch 分页查询实现方案——Top K+归并排序

    elasticsearch 分页查询实现方案 1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10,注意:size的大小不能超 ...

  2. Elasticsearch——分页查询From&Size VS scroll

    Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如果要实现分页查询该怎么办呢? 更多内容参考Elasticsearch资料汇总 按照一般的查询 ...

  3. ElasticSearch—分页查询

    ElasticSearch查询—分页查询详解 Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如何实现分页查询呢? 按照一般的查询流程来说,如 ...

  4. elasticsearch 分页查询实现方案

    1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10, 注意:size的大小不能超过index.max_result_wind ...

  5. ElasticSearch——分页查询

    前言 ElasticSearch实现分页查询,有3种方式,他们在数据查询中各自占据着不同的优势,因此在搜索引擎的数据分页过程中,如何更好地利用各自的优势来进行数据查询是一个非常重要的过程. 传统分页( ...

  6. Elasticsearch分页查询

    global index global CLIENT index = "guajibao-ipused-2019.10.13" CLIENT = Elasticsearch(hos ...

  7. Elasticsearch教程(九) elasticsearch 查询数据 | 分页查询

    Elasticsearch  的查询很灵活,并且有Filter,有分组功能,还有ScriptFilter等等,所以很强大.下面上代码: 一个简单的查询,返回一个List<对象> ..    ...

  8. elasticsearch查询之大数据集分页查询

    一. 要解决的问题 search命中的记录特别多,使用from+size分页,直接触发了elasticsearch的max_result_window的最大值: { "error" ...

  9. Elasticsearch from/size-浅分页查询-深分页 scroll-深分页search_after深度查询区别使用及应用场景

    Elasticsearch调研深度查询 1.from/size 浅分页查询 一般的分页需求我们可以使用from和size的方式实现,但是这种的分页方式在深分页的场景下应该是避免使用的.深分页的页次增加 ...

随机推荐

  1. js 获取是否为闰年,以及各月的天数 & isLeapYear

    js 获取是否为闰年,以及各月的天数 calendar utils isLeapYear const isLeapYear = (year) => { return (year % 4 === ...

  2. 比特币等主流货币走势成谜,VAST深受关注

    谁也不会想到,2021年的第一个月份,数字货币市场就会如此精彩.先是以比特币为首的主流货币迎来了一波上涨,让很多生态建设者看到了暴富的机会.再是一波大跌,让很多建设者失去了希望.再到后来触底反弹和冲高 ...

  3. Java 动态调试技术原理及实践

    本文转载自Java 动态调试技术原理及实践 导语 断点调试是我们最常使用的调试手段,它可以获取到方法执行过程中的变量信息,并可以观察到方法的执行路径.但断点调试会在断点位置停顿,使得整个应用停止响应. ...

  4. RocketMQ同一个消费者唯一Topic多个tag踩坑经历

    最近做的项目的一个版本需求中,需要用到MQ,对数据记录进行异步落库,这样可以减轻数据库的压力,同时可以抗住大量的数据落库.这里需要说明一下本人用到的MQ是公司自己在阿里的RokectMQ的基础上进行封 ...

  5. [信号与系统]傅里叶变换、DFT、FFT分析与理解

    目录 一.前言 二.傅里叶变换 1.傅里叶级数 2.傅里叶级数系数求解 2.1.求解方法 2.2.三角函数的正交性 2.3.系数求解过程 2.4.关于傅里叶级数的个人感悟 3.引入复指数 4.总结 三 ...

  6. list.add(int index, E element)和list.addAll(list1)

    List.add(int index, E element): 在列表的指定位置插入指定元素(可选操作).将当前处于该位置的元素(如果有的话)和所有后续元素向右移动(在其索引中加 1). 参数:ind ...

  7. go的循环

    目录 go的循环 一.语法 二.语法简写 1.省略第一部分 2.省略第二部分 3.省略第三部分 4.全省略:死循环 5.终极写法,简洁变形 go的循环 Go中只有for循环,没有while循环.因为w ...

  8. SpringBoot(一):使用IDEA快速搭建一个SpringBoot项目(详细)

    环境: JDK1.8   Maven:3.5.4 1.打开IDEA,右上角选择File→New→Project 选择Spring Initializr(使用IDEA自带的插件创建需要电脑联网) 2.点 ...

  9. mysql索引设计的注意事项(大量示例,收藏再看)

    mysql索引设计的注意事项(大量示例,收藏再看) 目录 一.索引的重要性 二.执行计划上的重要关注点 (1).全表扫描,检索行数 (2).key,using index(覆盖索引) (3).通过ke ...

  10. Omega System Trading and Development Club内部分享策略Easylanguage源码 (第二期)

    更多精彩内容,欢迎关注公众号:数量技术宅,也可添加技术宅个人微信号:sljsz01,与我交流. 我们曾经在前文(链接),为大家分享我们精心整理的私货:"System Trading and ...