题意:N个编号为1~N的数,选任意个数分入任意个盒子内(盒子互不相同)的不同排列组合数。

解法:综合排列组合 Stirling(斯特林)数的知识进行DP。C[i][j]表示组合,从i个数中选j个数的方案数;S[i][j]表示Stirling数,i个数分成j份的方案数;P[i]表示P(i,i)全排列。
分别从N个数中选i个数后,这i个数分成j份(j=1~i),进入j个盒子内,j个盒子有不同的排列。
因此,对于N个数的公式为:ans=sum{C[n][i]*sum{S[i][j]*P[j]}};

P.S.noi oj上的数据有误

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 110
7 #define NN 100
8 typedef long long LL;
9
10 LL C[N][N],S[N][N],P[N];
11
12 void init()
13 {
14 C[1][0]=C[1][1]=1;
15 S[1][0]=0,S[1][1]=1;
16 P[1]=1;
17 for (int i=2;i<=NN;i++)
18 {
19 C[i][0]=C[i][i]=1;
20 S[i][0]=0,S[i][i]=1;
21 for (int j=1;j<i;j++)
22 {
23 C[i][j]=C[i-1][j-1]+C[i-1][j];
24 S[i][j]=S[i-1][j-1]+j*S[i-1][j];
25 }
26 P[i]=P[i-1]*i;
27 }
28 }
29
30 int main()
31 {
32 init();
33 int T,n;
34 scanf("%d",&T);
35 for (int e=1;e<=T;e++)
36 {
37 scanf("%d",&n);
38 LL ans=0;
39 for (int i=1;i<=n;i++)
40 {
41 LL h=0;
42 for(int j=1;j<=i;j++)
43 h+=S[i][j]*P[j];
44 ans+=C[n][i]*h;
45 }
46 printf("%d %d %I64d\n",e,n,ans);
47 }
48 return 0;
49 }

【noi 2.6_9283】&【poj 3088】Push Botton Lock(DP--排列组合 Stirling数)的更多相关文章

  1. poj 3252 Round Numbers 【推导·排列组合】

    以sample为例子 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1] 即:Rn[start,finish]=Rn[0,finish]-R ...

  2. 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)

    题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...

  3. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  4. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  5. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

  6. poj 3254(状态压缩DP)

    poj  3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...

  7. POJ 1739 Tony's Tour (DP)

    题意:从左下角到右下角有多少种走法. 析:特殊处理左下角和右下角即可. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000 ...

  8. poj 2324 Anniversary party(树形DP)

    /*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...

  9. POJ 3088 斯特林

    题意:有一个n个按钮的锁,按下一些按钮打开门,有多少开门方式,其中,一些按钮可以选,可以不选,选中的按钮 可以分成一些集合,集合之间无序,是同时按下的. 分析: 1.首先选择 i 个按钮,组合数 2. ...

随机推荐

  1. 树莓派-4WD智能小车操作小结

    树莓派-4WD智能小车操作小结 树莓派4B-4WD智能小车,双层结构,第一层结构为:小车扩展板(底层)+树莓派主板,通过铜柱隔离固定,小车扩展板相当于计算机的外设扩展板:上面一层为第二层,是三个舵机承 ...

  2. 爬虫-urllib3模块的使用

    urllib3是一个功能强大,对SAP健全的 HTTP客户端,许多Python生态系统已经使用了urllib3. 一.安装 sudo pips install urllib3 二.创建PoolMana ...

  3. 【Linux】ssh设置了密钥,但ssh登陆的时候还需要输入密码

    ------------------------------------------------------------------------------------------------- | ...

  4. mybatis中传集合时 报异常 invalid comparison: java.util.Arrays$ArrayList and java.lang.String

    犯了一个低级的错误,在传集合类型的参数时,把他当成字符串处理了,导致报类型转换的错误 把  and nsrsbh!=' ' 删掉就行了

  5. 解决ubuntu获取root账号并开通ssh

    1.设置root密码 sudo passwd root 2.修改etc/ssh/sshd_config文件 su - root vi /etc/ssh/sshd_config LoginGraceTi ...

  6. [Cerc2005]Knights of the Round Table

    题目描述 有n个骑士经常举行圆桌会议,商讨大事.每次圆桌会议至少有3个骑士参加,且相互憎恨的骑士不能坐在圆桌的相邻位置.如果发生意见分歧,则需要举手表决,因此参加会议的骑士数目必须是大于1的奇数,以防 ...

  7. 详解Mybatisplus

    详解Mybatisplus ​ MyBatis-Plus(简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生. 特性: 无侵入**:只 ...

  8. 大数据系列4:Yarn以及MapReduce 2

    系列文章: 大数据系列:一文初识Hdfs 大数据系列2:Hdfs的读写操作 大数据谢列3:Hdfs的HA实现 通过前文,我们对Hdfs的已经有了一定的了解,本文将继续之前的内容,介绍Yarn与Yarn ...

  9. http发送

    package cn.com.yitong.wdph.util; import java.io.BufferedReader;import java.io.InputStream;import jav ...

  10. 指令集架构 x86-64 x86架构的64位拓展,向后兼容于16位及32位的x86架构

    https://zh.wikipedia.org/wiki/X86 x86泛指一系列英特尔公司用于开发处理器的指令集架构,这类处理器最早为1978年面市的"Intel 8086"C ...