题意:N个编号为1~N的数,选任意个数分入任意个盒子内(盒子互不相同)的不同排列组合数。

解法:综合排列组合 Stirling(斯特林)数的知识进行DP。C[i][j]表示组合,从i个数中选j个数的方案数;S[i][j]表示Stirling数,i个数分成j份的方案数;P[i]表示P(i,i)全排列。
分别从N个数中选i个数后,这i个数分成j份(j=1~i),进入j个盒子内,j个盒子有不同的排列。
因此,对于N个数的公式为:ans=sum{C[n][i]*sum{S[i][j]*P[j]}};

P.S.noi oj上的数据有误

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 110
7 #define NN 100
8 typedef long long LL;
9
10 LL C[N][N],S[N][N],P[N];
11
12 void init()
13 {
14 C[1][0]=C[1][1]=1;
15 S[1][0]=0,S[1][1]=1;
16 P[1]=1;
17 for (int i=2;i<=NN;i++)
18 {
19 C[i][0]=C[i][i]=1;
20 S[i][0]=0,S[i][i]=1;
21 for (int j=1;j<i;j++)
22 {
23 C[i][j]=C[i-1][j-1]+C[i-1][j];
24 S[i][j]=S[i-1][j-1]+j*S[i-1][j];
25 }
26 P[i]=P[i-1]*i;
27 }
28 }
29
30 int main()
31 {
32 init();
33 int T,n;
34 scanf("%d",&T);
35 for (int e=1;e<=T;e++)
36 {
37 scanf("%d",&n);
38 LL ans=0;
39 for (int i=1;i<=n;i++)
40 {
41 LL h=0;
42 for(int j=1;j<=i;j++)
43 h+=S[i][j]*P[j];
44 ans+=C[n][i]*h;
45 }
46 printf("%d %d %I64d\n",e,n,ans);
47 }
48 return 0;
49 }

【noi 2.6_9283】&【poj 3088】Push Botton Lock(DP--排列组合 Stirling数)的更多相关文章

  1. poj 3252 Round Numbers 【推导·排列组合】

    以sample为例子 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1] 即:Rn[start,finish]=Rn[0,finish]-R ...

  2. 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)

    题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...

  3. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  4. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  5. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

  6. poj 3254(状态压缩DP)

    poj  3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...

  7. POJ 1739 Tony's Tour (DP)

    题意:从左下角到右下角有多少种走法. 析:特殊处理左下角和右下角即可. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000 ...

  8. poj 2324 Anniversary party(树形DP)

    /*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...

  9. POJ 3088 斯特林

    题意:有一个n个按钮的锁,按下一些按钮打开门,有多少开门方式,其中,一些按钮可以选,可以不选,选中的按钮 可以分成一些集合,集合之间无序,是同时按下的. 分析: 1.首先选择 i 个按钮,组合数 2. ...

随机推荐

  1. 记汉化zabbix后图形界面没有任何汉字的问题

    1.安装并汉化后zabbix,所有的图形界面都没有任何字图,如下图 2.郁闷不已,去/var/www/html/zabbix/fonts目录下面查看,发现之前上传字体的文件名后缀是.ttc,猜着一般见 ...

  2. 【EXPDP】导出全部表的时候,选择不导出某个表

    导出的时候指定某一张表不导出的话,一般都用的是数据泵的expdp来操作 具体方法是: expdp test/test dumpfile=test.dmp directory=test_dir excl ...

  3. Nginx基础环境搭建

    1.下载docker toolbox https://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/ 2.选择好安装目录 一路nex ...

  4. 使用存储过程在mysql中批量插入数据

    一.在mysql数据库中创建一张表test DROP TABLE IF EXISTS `test`; CREATE TABLE `test` ( `id` INT (11), `name` VARCH ...

  5. 阿里云RDS物理备份恢复到本地

    一:业务场景 验证阿里云备份文件可用性 二:恢复到本地过程中遇到的问题 1.修改密码报错 2.自定义函数不可用 三:恢复步骤 1.xtrabackup安装使用 请参考:https://www.cnbl ...

  6. TCP客户端程序

    TCP客户端程序的函数调用顺序为:socket -> connect -> send/recv socket.send和recv函数在TCP服务器程序中已经说过了,这里就不赘述了. con ...

  7. VGA调试心得

    以前自己调试过视频信号,无非就时钟加行场同步加数据线,如果视频信号出问题,第一看现象,第二测频率,反正出问题不是消隐信号出问题,就是时钟频率出问题.通过这种方式也调试成功过几个显示屏,然后就以为自己对 ...

  8. 导出带有图片的excel

    public static void main(String[] args) { try { FileOutputStream out = new FileOutputStream("d:\ ...

  9. selenium元素等待的三种方法

    1.强制等待sleep() 使用方法:sleep(X),等待X秒后,进行下一步操作. 使用最简单的一种办法就是强制等待sleep(X),强制让浏览器等待X秒,不管当前操作是否完成,是否可以进行下一步操 ...

  10. trust an HTTPS connection 安全协议 随机数 运输层安全协议 应用层安全协议 安全证书

    小结: 1.HTTPS存在不同于HTTP的默认端口及一个加密/身份验证层(在HTTP与TCP之间) HTTPS(全称:Hyper Text Transfer Protocol over Secure ...