题意:N个编号为1~N的数,选任意个数分入任意个盒子内(盒子互不相同)的不同排列组合数。

解法:综合排列组合 Stirling(斯特林)数的知识进行DP。C[i][j]表示组合,从i个数中选j个数的方案数;S[i][j]表示Stirling数,i个数分成j份的方案数;P[i]表示P(i,i)全排列。
分别从N个数中选i个数后,这i个数分成j份(j=1~i),进入j个盒子内,j个盒子有不同的排列。
因此,对于N个数的公式为:ans=sum{C[n][i]*sum{S[i][j]*P[j]}};

P.S.noi oj上的数据有误

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 110
7 #define NN 100
8 typedef long long LL;
9
10 LL C[N][N],S[N][N],P[N];
11
12 void init()
13 {
14 C[1][0]=C[1][1]=1;
15 S[1][0]=0,S[1][1]=1;
16 P[1]=1;
17 for (int i=2;i<=NN;i++)
18 {
19 C[i][0]=C[i][i]=1;
20 S[i][0]=0,S[i][i]=1;
21 for (int j=1;j<i;j++)
22 {
23 C[i][j]=C[i-1][j-1]+C[i-1][j];
24 S[i][j]=S[i-1][j-1]+j*S[i-1][j];
25 }
26 P[i]=P[i-1]*i;
27 }
28 }
29
30 int main()
31 {
32 init();
33 int T,n;
34 scanf("%d",&T);
35 for (int e=1;e<=T;e++)
36 {
37 scanf("%d",&n);
38 LL ans=0;
39 for (int i=1;i<=n;i++)
40 {
41 LL h=0;
42 for(int j=1;j<=i;j++)
43 h+=S[i][j]*P[j];
44 ans+=C[n][i]*h;
45 }
46 printf("%d %d %I64d\n",e,n,ans);
47 }
48 return 0;
49 }

【noi 2.6_9283】&【poj 3088】Push Botton Lock(DP--排列组合 Stirling数)的更多相关文章

  1. poj 3252 Round Numbers 【推导·排列组合】

    以sample为例子 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1] 即:Rn[start,finish]=Rn[0,finish]-R ...

  2. 【noi 2.6_9288】&【hdu 1133】Buy the Ticket(DP / 排列组合 Catalan+高精度除法)

    题意:有m个人有一张50元的纸币,n个人有一张100元的纸币.他们要在一个原始存金为0元的售票处买一张50元的票,问一共有几种方案数. 解法:(学习了他人的推导后~) 1.Catalan数的应用7的变 ...

  3. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  4. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  5. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

  6. poj 3254(状态压缩DP)

    poj  3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...

  7. POJ 1739 Tony's Tour (DP)

    题意:从左下角到右下角有多少种走法. 析:特殊处理左下角和右下角即可. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000 ...

  8. poj 2324 Anniversary party(树形DP)

    /*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...

  9. POJ 3088 斯特林

    题意:有一个n个按钮的锁,按下一些按钮打开门,有多少开门方式,其中,一些按钮可以选,可以不选,选中的按钮 可以分成一些集合,集合之间无序,是同时按下的. 分析: 1.首先选择 i 个按钮,组合数 2. ...

随机推荐

  1. 2021升级版微服务教程6—Ribbon使用+原理+整合Nacos权重+实战优化 一篇搞定

    2021升级版SpringCloud教程从入门到实战精通「H版&alibaba&链路追踪&日志&事务&锁」 教程全目录「含视频」:https://gitee.c ...

  2. 【剑指 Offer】05.替换空格

    题目描述 请实现一个函数,把字符串 s 中的每个空格替换成"%20". 示例 1: 输入:s = "We are happy." 输出:"We%20a ...

  3. MongoDB Sharding(二) -- 搭建分片集群

    在上一篇文章中,我们基本了解了分片的概念,本文将着手实践,进行分片集群的搭建 首先我们再来了解一下分片集群的架构,分片集群由三部分构成: mongos:查询路由,在客户端程序和分片之间提供接口.本次实 ...

  4. intellij idea2020将javaWeb项目打成war包并部署到阿里云服务器遇到java.lang. UnsupportedClass VersionError问题(已解决)

    首先将javaweb项目打包成war文件(有关如何打包参考 https://jingyan.baidu.com/article/20b68a88642829386cec62f7.html.https: ...

  5. kubernets集群的安全防护(下)

    一   集群角色以及集群角色绑定 1.1  前面我们提到过角色以及角色绑定,那么现在为什么会出现集群级别的角色以及角色绑定,作用有如下所示 我们如果需要在所有的命名的空间创建某个角色或者角色绑定的时候 ...

  6. oracle视图添加hint

    /* Formatted on 2019/8/6 下午 02:51:21 (QP5 v5.163.1008.3004) */ SELECT DB FROM ( SELECT /*+ index(A.r ...

  7. 1.2V转5V稳压芯片,低功耗电路

    PW5100具有将低输入电压0.7V-5V之间的范围,升压型,升压到5V的稳定电压输出. 可以使其镍氢电池1.2V稳定输出5V的1.2V转5V芯片. PW5100具有极低的输入静态功耗,1.2V时,应 ...

  8. ElasticSearch7.2简单命令实操(postman版)

    使用postman访问操作ElasticSearch数据库,数据格式均为json 目录 使用postman访问操作ElasticSearch数据库,数据格式均为json 一.集群设置 1.查看集群设置 ...

  9. Databricks 第9篇:Spark SQL 基础(数据类型、NULL语义)

    Spark SQL 支持多种数据类型,并兼容Python.Scala等语言的数据类型. 一,Spark SQL支持的数据类型 整数系列: BYTE, TINYINT:表示1B的有符号整数 SHORT, ...

  10. uni-app开发经验分享五: 解决三端页面兼容问题的方法

    在做uni-app开发的过程中,我们最头疼可能不是开发的过程中的逻辑,而是最后要做的三端兼容测试和修改,在我开发的项目中,这一步都是最头疼和令人头秃的过程,这里总结一些个人开发遇到的问题,希望对大家有 ...