题意:要求二叉树中每个节点的子节点数为0或2,求有N个节点高度为M的不同的二叉树有多少个(输出 mod 9901 后的结果)。

解法:f[i][j]表示高度为i的有j个节点的二叉树个数。同上题一样,把高度为i的树分解成1个根节点和2棵子树,子树中有一棵高度为i-1,较高,枚举其结点数,另一颗较矮,高度为0~i-2(用sum存),结点数也可知道了。分别左子树和右子树较高,便*2。还有2子树一样高,同为i-1时的情况。
==》也可转化为一棵高i-1,另一棵高0~i-1,*2后减去多算的两子树同高 i-1 的情况。

注意——循环可限制大小时,不要轻易缩小该循环范围。因为缩小后没有提到的那几个状态要想清楚后另外赋值。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 310
7 #define M 110
8 #define mod 9901
9
10 int f[M][N],sum[N][M];
11 int main()
12 {
13 int n,m;
14 scanf("%d%d",&n,&m);
15 f[1][1]=sum[1][1]=1;
16 for (int j=2;j<=n;j++)
17 f[1][j]=sum[1][j]=0;
18 for (int i=2;i<=m;i++)
19 {
20 for (int j=1;j<=n;j++)
21 {
22 f[i][j]=0;
23 for (int k=1;k<j;k++)
24 f[i][j]=(f[i][j]+(2*f[i-1][k]*sum[i-1][j-k-1]-f[i-1][k]*f[i-1][j-k-1])%mod)%mod;
25 sum[i][j]=(sum[i-1][j]+f[i][j])%mod;
26 }
27 }
28 printf("%d\n",f[m][n]);
29 return 0;
30 }

【noi 2.6_9281】技能树(DP)的更多相关文章

  1. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  2. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  3. BZOJ 2436 Noi嘉年华(优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2436 题意:有一些活动,起始时间持续时间已知.有两个场地.每个活动最多只能在一个场地举行 ...

  4. NOI Online 游戏 树形dp 广义容斥/二项式反演

    LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g ...

  5. 7.1 NOI模拟赛 计数问题 dp

    还是可以想出来的题目 不过考场上没有想出来 要 引以为戒. 初看觉得有点不可做 10分给到了爆搜. 考虑第一个特殊情况 B排列为1~m. 容易发现A排列中前m个数字 他们之间不能产生交换 且 第k个数 ...

  6. noi 162 post office dp

    大致题意: 有v个村庄,每个村庄有各自的位置,且每个位置互不相同.现在要在村庄上设立P个邮局,使每个村庄到最近的邮局的距离之和最小. 分析: 定义状态d[i][j]表示前i个村庄,在这i个村庄中设立j ...

  7. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  8. BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔

    汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...

  9. LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)

    题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{ ...

随机推荐

  1. 一条查询SQl是怎样执行的

    MySQL的逻辑架构图 大体来说,MySQL可以分为Server层和存储引擎层两部分. Server层包括连接器.查询缓存.分析器,优化器等,涵盖MySQL的大多核心服务功能,以及所有的内置函数,存储 ...

  2. 【Oracle】userenv()函数介绍分析

    说到这个userenv()使用起来还是很有用的 参数   功能 CLINET_INFO                                      返回最高可达64个字节存储的用户会话信 ...

  3. 【TOMCAT】windows7下tomcat6环境部署

    首先,下载一个tomcat6的部署包 地址http://download.csdn.net/download/imliuqun123/10156942 需要部署安装的win7环境变量: 1.jdk环境 ...

  4. 关于SET/GET PARAMETER ID的注意事项

    通常这两个语法配合 PARAMETER, select-options中的参数 memory id来使用. 如,选择屏幕定义 PARAMETER p1 TYPE c LENGTH 10 MEMORY  ...

  5. 权限管理3-整合Spring Security

    一.Spring Security介绍 1.框架介绍 Spring 是一个非常流行和成功的 Java 应用开发框架.Spring Security 基于 Spring 框架,提供了一套 Web 应用安 ...

  6. JWT令牌简介及demo

    一.访问令牌的类型 二.JWT令牌 1.什么是JWT令牌 ​ JWT是JSON Web Token的缩写,即JSON Web令牌,是一种自包含令牌. JWT的使用场景: 一种情况是webapi,类似之 ...

  7. html简单基础

    标签语法 标签的语法: <标签名 属性1="属性值1" 属性2="属性值2"-->内容部分</标签名> <标签名 属性1=&quo ...

  8. ichartjs测试dome分享

    效果如下: 代码如下: <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> ...

  9. 大数据系列2:Hdfs的读写操作

    在前文大数据系列1:一文初识Hdfs中,我们对Hdfs有了简单的认识. 在本文中,我们将会简单的介绍一下Hdfs文件的读写流程,为后续追踪读写流程的源码做准备. Hdfs 架构 首先来个Hdfs的架构 ...

  10. 遍历仓库里的 commit log 替换author

    #!/bin/sh # 遍历仓库里的 commit log, 替换author git filter-branch --env-filter ' an="$GIT_AUTHOR_NAME&q ...