BJOI2016 回转寿司
Description
给定一个长度为 \(N\) 的序列 \(a\),和一个区间 \([L, R]\)。
求多少连续子序列的权值和在区间内,即满足 \(1 \le i \le j \le n\) 且满足 \(L \le \sum_{k=i}^{j} a[i] \le R\) 的方案数。
Solution
区间和,很容易想到用前缀和转换,这样区间相关变成了两个点。设 \(s\) 为 \(a\) 的前缀和,那么统计就变成了这样。
统计 \(0 \le i < j \le n\) 中满足 \(L \le s[j] - s[i] \le R\) 的方案数的。数据只有一组询问,显然是支持我们枚举一维,的不妨枚举 \(s[i]\),那么转化一下式子,就是满足 \(L + s[i] \le s[j] \le R + s[i]\) 且 \(i < j\) 的 \(j\) 的数量。
这就是一个显然的二维偏序问题,做法就是:
- 倒序枚举 \(i\)
- 查询答案
- 插入 \(s[i]\)
单调修改、区间查询这个操作我们再熟悉不过了。但是这次因为离散化会把值域信息搞没,所以不能离散化,只能动态开点线段树。(后来想了一下好像也可以,把数值全部打进数组离散化一下,所以写了两个版本)。
时间复杂度
\(O(n\log_2 10^{10})\)
Code
动态开点线段树版
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 100005;
int n, L, R, rt, idx;
struct T{
int l, r, v;
} t[N * 30];
LL Lt = 9e18, Rt = -9e18;
LL s[N], ans = 0;
void inline pushup(int p) {
t[p].v = t[t[p].l].v + t[t[p].r].v;
}
void insert(int &p, LL l, LL r, LL x) {
if (!p) p = ++idx;
t[p].v++;
if (l == r) return;
LL mid = (l + r) >> 1;
if (x <= mid) insert(t[p].l, l, mid, x);
else insert(t[p].r, mid + 1, r, x);
}
int query(int p, LL l, LL r, LL x, LL y) {
if (!p) return 0;
if (x <= l && r <= y) return t[p].v;
LL mid = (l + r) >> 1, res = 0;
if (x <= mid) res += query(t[p].l, l, mid, x, y);
if (mid < y) res += query(t[p].r, mid + 1, r, x, y);
return res;
}
int main() {
scanf("%d%d%d", &n, &L, &R);
for (int i = 1; i <= n; i++) scanf("%lld", &s[i]), s[i] += s[i - 1];
for (int i = 1; i <= n; i++) {
Lt = min(Lt, s[i]);
Rt = max(Rt, R + s[i]);
}
for (int i = n; ~i; i--) {
ans += query(rt, Lt, Rt, L + s[i], R + s[i]);
if (i) insert(rt, Lt, Rt, s[i]);
}
printf("%lld\n", ans);
return 0;
}
树状数组版
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100005;
int n, L, R, tot, c[N];
LL s[N], d[N], ans = 0;
int inline get(LL x) {
return lower_bound(d + 1, d + 1 + tot, x) - d;
}
void inline add(int x) {
for (; x <= tot; x += x & -x) c[x]++;
}
int inline ask(int x) {
int res = 0;
for (; x; x -= x & -x) res += c[x];
return res;
}
int main() {
scanf("%d%d%d", &n, &L, &R);
for (int i = 1; i <= n; i++)
scanf("%lld", &s[i]), s[i] += s[i - 1], d[++tot] = s[i];
sort(d + 1, d + 1 + tot);
tot = unique(d + 1, d + 1 + tot) - d - 1;
for (int i = n; ~i; i--) {
int A = lower_bound(d + 1, d + 1 + tot, L + s[i]) - d - 1;
int B = upper_bound(d + 1, d + 1 + tot, R + s[i]) - d - 1;
ans += ask(B) - ask(A);
if (i) add(get(s[i]));
}
printf("%lld\n", ans);
return 0;
}
BJOI2016 回转寿司的更多相关文章
- P5459 [BJOI2016]回转寿司
传送门 暴力怎么搞,维护前缀和 $s[i]$ ,对于每一个 $s[i]$,枚举所有 $j\in[0,i-1]$,看看 $s[i]-s[j]$ 是否属于 $[L,R]$ 如果属于就加入答案 $s[i]- ...
- BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组
BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...
- bzoj 4627: [BeiJing2016]回转寿司 -- 权值线段树
4627: [BeiJing2016]回转寿司 Time Limit: 10 Sec Memory Limit: 256 MB Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店. ...
- bzoj 4627: [BeiJing2016]回转寿司
4627: [BeiJing2016]回转寿司 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 司带给小Z的味觉感受是不 ...
- 【BZOJ4627】[BeiJing2016]回转寿司 SBT
[BZOJ4627][BeiJing2016]回转寿司 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿司带给小Z的味觉感 ...
- [LOJ2736] [JOISC 2016 Day 3] 回转寿司 (分块+堆)
[LOJ2736] [JOISC 2016 Day 3] 回转寿司 (分块+堆) 题面 给出一个有n 个点的环,环上各点有一个初始权值 \(a_i\) 给出 Q 个询问,每次询问给出一个区间 [l,r ...
- K - 回转寿司(值域段数(板题) + 动态开点)
回转寿司 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 司带给小Z的味觉感受是不一样的,我们定义小Z对每盘寿司都有一个 ...
- 【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组
题目描述 给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数. 输入 第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限. 第二行包含N个整数Ai,表示小Z对寿 ...
- bzoj4627: [BeiJing2016]回转寿司
权值线段树. 要求 L<=(s[i]-s[j])<=R (i<j). 的i和j的数量. 所以把前缀和s加入一棵权值线段树,每次询问满足条件的范围中的权值的个数. 权值线段树不能像普 ...
随机推荐
- dp背包 面试题 08.11. 硬币
https://leetcode-cn.com/problems/coin-lcci/ 硬币.给定数量不限的硬币,币值为25分.10分.5分和1分,编写代码计算n分有几种表示法.(结果可能会很大,你需 ...
- 磁盘构造/msdos分区(fdisk)格式化(mkfs)和挂载
分区不是必要的,分区是与系统盘分开,防止数据丢失. 磁盘使用流程:查看磁盘(fdisk -l)---分区---格式化(创建文件系统)----挂载(自动挂载) 分区表类型:msdos(一般是系统分区) ...
- win10安装MySQL5.7.31 zip版
因为我之前卸载了安装的(msi,exe)格式的MySQL,现在重新安装zip版的MySQL. 1,下载MySQL MySQL下载地址 : https://dev.mysql.com/downloads ...
- 自动化测试_移动端测试(二)—— Appium原理
一.什么是Appium Appium是一个开源.跨平台的测试框架,可以用来测试原生及混合的移动端应用.Appium支持IOS.Android及FirefoxOS平台.Appium使用WebDriver ...
- 教您使用OCR编辑器复制文档内容
ABBYY FineReader 15允许用户复制图像或者扫描页面上的内容,可复制其中的文本.图片和表格的信息.在复制过程中,用户无需将图像或扫描页面转换为可编辑的格式,可以直接在ABBYY Fine ...
- word边框+底纹
边框(段落和文字):先进行方框.阴影.三维等边框的选择,再进行样式.颜色.宽度设置,应用于:段落和文字:选项:距离正文上下左右距离. 页面边框(页.整篇文章等):先进行方框.阴影.三维等边框的选择,再 ...
- 1、Go语言介绍
一 Go语言介绍 Go 即Golang,是Google公司2009年11月正式对外公开的一门编程语言. Go是静态强类型语言,是区别于解析型语言的编译型语言. 解析型语言--源代码是先翻译为中间代码, ...
- Java(8)I/O
目录 一.File类 1.File类概述 2.File类实例化 3.File类常用方法 二.IO流的原理 1.IO流的原理 2.input和output的理解 三.IO流的分类 1.分类 2.图示 3 ...
- PDF文件处理助手 3.3.2版本更新
本次更新内容如下: 1.修复部分PDF在"去水印"-"文字水印"-"模式3"下识别不到的问题. 2.修复部分情况下可能无法正确加载授权的问题 ...
- python—数据类型和变量
在python中,能够直接处理的数据类型和变量有整数.浮点数.字符串.布尔值.空值.变量. 一.整数 1.python可处理任意大小的整数,包括负整数,在程序中的表示方法与在数学中的方法一样.例如:0 ...