Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different daemon processes that run on specific hosts within your CDH cluster.

Continue reading:

 

The Impala Daemon

The core Impala component is a daemon process that runs on each node of the cluster, physically represented by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work to other nodes in the Impala cluster; and transmits intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any node, and that node serves as the coordinator node for that query. The other nodes transmit partial results back to the coordinator, which constructs the final result set for a query. When running experiments with functionality through the impala-shell command, you might always connect to the same Impala daemon for convenience. For clusters running production workloads, you might load-balance between the nodes by submitting each query to a different Impala daemon in round-robin style, using the JDBC or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala node in the cluster creates, alters, or drops any type of object, or when an INSERT or LOAD DATA statement is processed through Impala. This background communication minimizes the need for REFRESH or INVALIDATE METADATAstatements that were needed to coordinate metadata across nodes prior to Impala 1.2.

Related information: Modifying Impala Startup OptionsStarting ImpalaSetting the Idle Query and Idle Session Timeouts for impaladPorts Used by Impala,Using Impala through a Proxy for High Availability

The Impala Statestore

The Impala component known as the statestore checks on the health of Impala daemons on all the nodes in a cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon process named statestored; you only need such a process on one node in the cluster. If an Impala node goes offline due to hardware failure, network error, software issue, or other reason, the statestore informs all the other nodes so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong, it is not critical to the normal operation of an Impala cluster. If the statestore is not running or becomes unreachable, the other nodes continue running and distributing work among themselves as usual; the cluster just becomes less robust if other nodes fail while the statestore is offline. When the statestore comes back online, it re-establishes communication with the other nodes and resumes its monitoring function.

Related information:

Scalability Considerations for the Impala StatestoreModifying Impala Startup OptionsStarting ImpalaIncreasing the Statestore TimeoutPorts Used by Impala

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all the nodes in a cluster. It is physically represented by a daemon process named catalogd; you only need such a process on one node in the cluster. Because the requests are passed through the statestore daemon, it makes sense to run the statestored and catalogd services on the same node.

This new component in Impala 1.2 reduces the need for the REFRESH and INVALIDATE METADATA statements. Formerly, if you issued CREATE DATABASE, DROP DATABASE,CREATE TABLE, ALTER TABLE, or DROP TABLE statements on one Impala node, you needed to issue INVALIDATE METADATA on any other node before running a query there, so that it would pick up the changes to schema objects. Likewise, if you issued INSERT statements on one node, you needed to issue REFRESH table_name on any other node before running a query there, so that it would recognize the newly added data files. The catalog service removes the need to issue REFRESH and INVALIDATE METADATAstatements when the metadata changes are performed by statement issued through Impala; when you create a table, load data, and so on through Hive, you still need to issue REFRESH or INVALIDATE METADATA on an Impala node before executing a query there.

This feature, new in Impala 1.2, touches a number of aspects of Impala:

  • See Impala InstallationUpgrading Impala and Starting Impala, for usage information for the catalogd daemon.

  • The REFRESH and INVALIDATE METADATA statements are no longer needed when the CREATE TABLE, INSERT, or other table-changing or data-changing operation is performed through Impala. These statements are still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement and INVALIDATE METADATA Statement for the latest usage information for those statements.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before accepting any requests, set the catalogd configuration option --load_catalog_in_background=false.

Components of the Impala Server的更多相关文章

  1. Cloudera Impala Guide

    Impala Concepts and Architecture The following sections provide background information to help you b ...

  2. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  3. 什么是staging server

    原文链接:http://blog.csdn.net/blade2001/article/details/7194895 软件应用开发的经典模型有这样几个环境:开发环境(development).集成环 ...

  4. Impala 源码分析-FE

    By yhluo 2015年7月29日 Impala 3 Comments Impala 源代码目录结构 SQL 解析 Impala 的 SQL 解析与执行计划生成部分是由 impala-fronte ...

  5. 【原创】大数据基础之Ambari(4)通过Ambari部署Impala

    ambari2.7.3(hdp3.1) 安装 impala2.12(自动安装最新) ambari的hdp中原生不支持impala安装,下面介绍如何通过mpack方式使ambari支持impala安装: ...

  6. How-to: Do Statistical Analysis with Impala and R

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  7. WebSphere Application Server V8.5.5.0

    Downloadable files Abstract IBM WebSphere Application Server Version 8.5.5 Refresh Pack for all plat ...

  8. Impala配置HA-Nginx

    Impala的高可用配置,官方的例子用的是Haproxy,考虑到nginx配置简单,使用人群广泛,再加上nginx1.9以后支持TCP的负载均衡,所以选用nginx. nginx安装:yum inst ...

  9. HUE配置文件hue.ini 的impala模块详解(图文详解)(分HA集群)

    不多说,直接上干货! 我的集群机器情况是 bigdatamaster(192.168.80.10).bigdataslave1(192.168.80.11)和bigdataslave2(192.168 ...

随机推荐

  1. android MD5

    public static String MD5(String str) { MessageDigest md5 = null; try { md5 = MessageDigest.getInstan ...

  2. OpenCV在Android平台上的应用

    今年8月份, OpenCV 2.3.1发布了. 虽然从2.2开始, OpenCV就号称支持Android平台, 但真正能让OpenCV在Android上运行起来还是在2.3.1版本上. 在这个版本上, ...

  3. Segmentation Fault错误原因总结

    最近在项目上遇到了Segmentation Fault的错误,一直调试不出来是哪里出了问题,对于刚接触嵌入式的,也不知道该如何去调试一个项目,定位内存问题,纠结了好几天,好阿红整理下自己的思路.从头开 ...

  4. Android studio中使用asmack的jar包的前期准备工作

    1.下载相应的jar包,官网:http://asmack.freakempire.de/SNAPSHOTS/ 将下载好的jar包拷贝到工程文件的libs文件夹下 2.右击app,然后依次操作 然后点击 ...

  5. Java 比较两张图片的相似度

    import java.awt.image.BufferedImage; import java.io.File; import javax.imageio.ImageIO; /** * 比较两张图片 ...

  6. 数据库编程与C#编程互译

    今天有一段代码,先是用程序实现. 闲来无聊,又用存储过程实现了一次. 程序中实现. /// <summary> /// 根据区域和用户名获取可访问的国家 /// </summary& ...

  7. Asp.Net连接Mysql报错Out of sync with server

    Asp.Net连接Mysql报错Out of sync with server 原因:程序引用的MySql.Data.dll版本高于服务器版本 解决:下载一个低版本的MySql.Data.dll,项目 ...

  8. ASP.NET中POST提交数据并跳转页面

    需求:先Post提交数据,然后跳转到目标页面 找了好久才发现这个神奇的类HttpHelper.原理很简单,利用html的from表单拼接,然后执行 使用方法: NameValueCollection ...

  9. python - pip 从已有的安装列表 安装

    已经安装好的机器:sudo pip freeze > install_list.list 需要安装的机器:sudo pip install -r install_list.list

  10. 【RMQ问题】求数组区间最大值,NYOJ-1185-最大最小值

    转自:http://blog.csdn.net/lilongherolilong/article/details/6624390 先挖好坑,明天该去郑轻找虐 RMQ(Range Minimum/Max ...