题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4687

  题意:给一个无向图,求所有的最大匹配的情况所不包含的边。。

  数据比较小,直接枚举边。先求一次最大匹配hig,然后依次枚举所有边,假设此边为一个匹配,那么删掉边的两个节点,然后再剩下的图中求最大匹配t,如果t<hig-1那么就是不包含的边了。关于一般图上的最大匹配算法,O(n^3)的Edmonds's matching algorithm,理解起来比较容易,但是写起来比较麻烦,收集了一个模板,by Amber。。。

 //STATUS:C++_AC_46MS_236KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
//#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End int a,b;
int n,m;
int head,tail,Start,Finish;
int link[N]; //表示哪个点匹配了哪个点
int Father[N]; //这个就是增广路的Father……但是用起来太精髓了
int Base[N]; //该点属于哪朵花
int Q[N];
bool mark[N];
bool map[N][N];
bool InBlossom[N];
bool in_Queue[N]; void BlossomContract(int x,int y)
{
fill(mark,mark+n+,false);
fill(InBlossom,InBlossom+n+,false);
#define pre Father[link[i]]
int lca,i;
for (i=x;i;i=pre) {i=Base[i]; mark[i]=true; }
for (i=y;i;i=pre) {i=Base[i]; if (mark[i]) {lca=i; break;} } //寻找lca之旅……一定要注意i=Base[i]
for (i=x;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //对于BFS树中的父边是匹配边的点,Father向后跳
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
for (i=y;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //同理
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
#undef pre
if (Base[x]!=lca) Father[x]=y; //注意不能从lca这个奇环的关键点跳回来
if (Base[y]!=lca) Father[y]=x;
for (i=;i<=n;i++){
if(i==a || i==b)continue;
if (InBlossom[Base[i]]){
Base[i]=lca;
if (!in_Queue[i]){
Q[++tail]=i;
in_Queue[i]=true; //要注意如果本来连向BFS树中父结点的边是非匹配边的点,可能是没有入队的
}
}
}
} void Change()
{
int x,y,z;
z=Finish;
while (z){
y=Father[z];
x=link[y];
link[y]=z;
link[z]=y;
z=x;
}
} void FindAugmentPath()
{
fill(Father,Father+n+,);
fill(in_Queue,in_Queue+n+,false);
for (int i=;i<=n;i++) Base[i]=i; //Init属于同一花朵
head=; tail=;
Q[]=Start; //当前节点进入队列
in_Queue[Start]=;
while (head!=tail){
int x=Q[++head];
for (int y=;y<=n;y++){
if(y==a || y==b)continue;
if (map[x][y] && Base[x]!=Base[y] && link[x]!=y){ //无意义的边
if ( Start==y || link[y] && Father[link[y]] ) //精髓地用Father表示该点是否
BlossomContract(x,y);
else if (!Father[y]){
Father[y]=x;
if (link[y]){
Q[++tail]=link[y];
in_Queue[link[y]]=true;
}
else{
Finish=y;
Change();
return;
}
}
}
}
}
} int Edmonds()
{
int i,cnt=;
memset(link,,sizeof(link));
memset(Father,,sizeof(Father));
for (Start=;Start<=n;Start++){
if(Start==a || Start==b)continue;
if (link[Start]==)
FindAugmentPath(); //如果点没有匹配,那么找BFS增广路
} for(i=;i<=n;i++)
if(link[i])cnt++;
return cnt;
} int e[][],ans[]; int main(){
// freopen("in.txt","r",stdin);
int i,j,hig,cnt;
while(~scanf("%d%d",&n,&m))
{
mem(map,);
for(i=;i<m;i++){
scanf("%d%d",&e[i][],&e[i][]);
map[e[i][]][e[i][]]=map[e[i][]][e[i][]]=true;
} a=b=-;
hig=Edmonds();
cnt=;
for(i=;i<m;i++){
a=e[i][],b=e[i][];
int t=Edmonds();
if(t<hig-)ans[cnt++]=i+;
} printf("%d\n",cnt);
if(cnt){
printf("%d",ans[]);
for(i=;i<cnt;i++)
printf(" %d",ans[i]);
}
putchar('\n');
}
return ;
}

HDU-4687 Boke and Tsukkomi 带花树,枚举的更多相关文章

  1. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  2. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  5. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  6. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  7. Hdu4687 Boke and Tsukkomi

    Boke and Tsukkomi                                                                               Time ...

  8. 【Learning】带花树——一般图最大匹配

    一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无 ...

  9. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

随机推荐

  1. oracle-number(5,2)

    insert into emp values(70000.123); 只能存储 整数的前3位, 小数点后面的2位

  2. 如果Java 失宠于Oracle,那么未来会怎么样?

    [编者按]对于前不久 Oracle 裁掉了一部分 Java 布道师,近日一位 Oracle 前高管称其为该机构对Java的「计划报废」.如果这个计划是属实的,那么对于寻常的开发者.已经采用了 Java ...

  3. eclipse代码自动提示功能设置

    一 般默认情况下,Eclipse ,MyEclipse的代码提示功能是比Microsoft Visual Studio的差很多的,主要是Eclipse ,MyEclipse本身有很多选项是默认关闭的, ...

  4. linux 修改命令行编码 乱码解决方案

    修改/etc/default/locale命令:sudo vim /etc/default/locale1将下面这两行 LANG=zh_CN.UTF-8 LANGUAGE=zh_CN:zh 修改为: ...

  5. codeforces #309 div1 B

    题目啰里啰嗦说了一大堆(耐心读完题目就可以秒题了) 首先我们考虑当前置换的开头的循环节的开头 1.如果是1 1->1形成循环节 问题变成i-1的子问题 2.如果是2 1->2->1形 ...

  6. CURL与PHP-CLI的应用【CLI篇】

    CLI的普通应用 什么是PHP-CLI php-cli是php Command Line Interface的简称,即PHP命令行接口,在windows和linux下都是支持PHP-CLI模式的; 为 ...

  7. python脚本工具-1 制作爬虫下载网页图片

    参考:http://www.cnblogs.com/fnng/p/3576154.html 本文参考虫师的博客“python实现简单爬虫功能”,整理分析后抓取其他站点的图片并下载保存在本地. 抓取图片 ...

  8. Layout Resource官方教程(4)<include>与<merge>

    Re-using Layouts with <include/> THIS LESSON TEACHES YOU TO Create a Re-usable Layout Use the ...

  9. C#.Net 如何动态加载与卸载程序集(.dll或者.exe)4-----Net下的AppDomain编程 [摘录]

    最近在对AppDomain编程时遇到了一个问题,卸载AppDomain后,在内存中还保留它加载的DLL的数据,所以即使卸载掉AppDomain,还是无法更新它加载的DLL.看来只有关闭整个进程来更新D ...

  10. 【HDOJ】2385 Stock

    水题,逆向做+优先级队列. /* 2385 */ #include <iostream> #include <sstream> #include <string> ...