[LeetCode#218] The Skyline Problem
Problem:
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).


The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX, 0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .
The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.
For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].
Notes:
- The number of buildings in any input list is guaranteed to be in the range
[0, 10000]. - The input list is already sorted in ascending order by the left x position
Li. - The output list must be sorted by the x position.
- There must be no consecutive horizontal lines of equal height in the output skyline. For instance,
[...[2 3], [4 5], [7 5], [11 5], [12 7]...]is not acceptable; the three lines of height 5 should be merged into one in the final output as such:[...[2 3], [4 5], [12 7], ...]
Analysis:
Key idea: use a priority queue to simulate the current dominant edge.
This problem is very very elegant. It tests many aspects of your coding ability.
1. Covert the problem into a simple form, avoid complex analysis(cases).
2. Indentify right cases handling for each simplified case.
3. Use proper data structure. And take advantage of language's inherent customerized sort method. Analysis:
The input is in the form of [x, y, height], which represents a building. If we analyze the problem based on building, it could be very complex. Many cases could happen, regarding the possible change in x relation, y relation and height relation. The overlapping of many buildings could make the situation gets much worse. Ask youself?
For all problems we have encountered so far, if we never really need to tackle the complex rectangle relationship?
Nope!!!We always dissect the problem into the realtionship among edges. It often could lead to a much simplifer problem. For this problem can we always do this?
Firstly, we dissect a rectangle into two edges : left and right.
The skyline could only happen at following cases:
1. Left edge.
Only when the left edge is the tallest among all left edges in its range. (any building includes the edge) 2. Right edge.
2.1 when the right edge is the last edge of a chain of consecutive buildings.
2.2 when right edge is the second largest edge when the previous building was just over. The two big problems we are facing now are:
1. How to separate each edge out of buildings? Since the building could overlap with each other.
Step 1: Define a proper data type for each edge. (the type should hold x-coordiante, height and whether it is start or end edge)
class Edge {
int x;
int height;
boolean is_start; public Edge(int x, int height, boolean is_start) {
this.x = x;
this.height = height;
this.is_start = is_start;
}
} Step 2: Spearate each edge out of each buidilding into a List.
for (int[] building : buildings) {
Edge left_edge = new Edge(building[0], building[2], true);
edges.add(left_edge);
Edge right_edge = new Edge(building[1], building[2], false);
edges.add(right_edge);
} Step 3: Define the proper comparator and take advantage of Collections' sort method.
Collections.sort(edges, new Comparator<Edge> () {
@Override
public int compare(Edge e1, Edge e2) {
if (e1.x != e2.x)
return Integer.compare(e1.x, e2.x);
if (e1.is_start == true && e2.is_start == true)
return Integer.compare(e2.height, e1.height);
if (e1.is_start == false && e2.is_start == false)
return Integer.compare(e1.height, e2.height);
return e1.is_start ? -1 : 1;
}
});
Note: the sorting method is very interesting, since e1 and e2 could be differnt types of edge.
Firstly, we want to guarantee the order follow the nature order have seen on the picture.
if (e1.x != e2.x)
return Integer.compare(e1.x, e2.x); Sencodly, the order should help us to tackle certain werid case.
Background: iff e1 and e2 share the same x coordinate
--------------------------------------------------------------------------------------------
Special 1: iff e1 and e2 both are left edges, we place the higher one before the smaller one.
if (e1.is_start == true && e2.is_start == true)
return Integer.compare(e2.height, e1.height);
--------------------------------------------------------------------------------------------
Special 2: iff e1 and e2 both are right edges, we place the smaller one before the higher one.
if (e1.is_start == false && e2.is_start == false)
return Integer.compare(e1.height, e2.height);
--------------------------------------------------------------------------------------------
Special 3: iff there are different type of edges. we place the start edge before the end edge
return e1.is_start ? -1 : 1;
-------------------------------------------------------------------------------------------- Afterward, we would combine our main algorithm to analyze the sorting method we have defined for special 1 and special 2. (It's very important in algorithm) 2. How could we model the range of a building, and the dominant height among buildings at each coordinate?
Tricky: We use a max heap for this purpose.
Once a start edge appears, we add it into the priority queue. If it is height larger than other start edges in the priority queue, it means this edge becomes the dominant edge (until it is left edge appears)
--------------------------------------------------------------------------------------------
if (edge.is_start) {
if (max.isEmpty() || edge.height > max.peek()) {
int[] skyline = {edge.x, edge.height};
skylines.add(skyline);
}
max.offer(edge.height);
}
--------------------------------------------------------------------------------------------
Thus the peek element of the PriorityQueue always represents the the dominant edge that is valid at present! When is the dominant edge over? (The building is over)
Once we detect a right edge, and it must have a paired left edge in the priority queue. Once we encounter the right edge, it menas the building is over, we should remove it's height(left edge) from the priority queue.
--------------------------------------------------------------------------------------------
if (!dge.is_start) {
max.remove(edge.height);
if (max.isEmpty() || edge.height > max.peek()) {
int[] skyline = new int[2];
skyline[0] = edge.x;
skyline[1] = (max.isEmpty() ? 0 : max.peek());
skylines.add(skyline);
}
}
Note : it works for all building, no the current dominant building. The idea is so great!!! Right!!!
Now, let us back to special case in sorting edge.
--------------------------------------------------------------------------------------------
Special 1: iff e1 and e2 both are left edges, we place the higher one before the smaller one.
if (e1.is_start == true && e2.is_start == true)
return Integer.compare(e2.height, e1.height); Reason:
We know iff both e1 and e2 are start edge, and share same x-coordinate, we should only record the higher one. Thus we could the higher one infront of the lower one, to avoid lower one to be recorded. --------------------------------------------------------------------------------------------
Special 2: iff e1 and e2 both are right edges, we place the smaller one before the higher one.
if (e1.is_start == false && e2.is_start == false)
return Integer.compare(e1.height, e2.height); Reason:
We know only the higher one should be consider as the turning point, thus we arrange the higher one at last, so as to count the higher one only. Cause my poor code ability, I have made follwing mistakes in the implementation.
mistake 1: Use Integer.comareTo as Integer.compare.
return Integer.compareTo(e1.height, e2.height); mistake 2: use method "Collections.reverse()" to generate inverse comparator.
PriorityQueue<Integer> max = new PriorityQueue<Integer> (10, Collections.reverse());
Solution:
public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
if (buildings == null)
throw new IllegalArgumentException("buildings is null");
List<int[]> skylines = new ArrayList<int[]> ();
if (buildings.length == 0)
return skylines;
List<Edge> edges = new ArrayList<Edge> ();
for (int[] building : buildings) {
Edge left_edge = new Edge(building[0], building[2], true);
edges.add(left_edge);
Edge right_edge = new Edge(building[1], building[2], false);
edges.add(right_edge);
}
Collections.sort(edges, new Comparator<Edge> () {
@Override
public int compare(Edge e1, Edge e2) {
if (e1.x != e2.x)
return Integer.compare(e1.x, e2.x);
if (e1.is_start == true && e2.is_start == true)
return Integer.compare(e2.height, e1.height);
if (e1.is_start == false && e2.is_start == false)
return Integer.compare(e1.height, e2.height);
return e1.is_start ? -1 : 1;
}
});
PriorityQueue<Integer> max = new PriorityQueue<Integer> (10, Collections.reverseOrder());
for (Edge edge : edges) {
if (edge.is_start) {
if (max.isEmpty() || edge.height > max.peek()) {
int[] skyline = {edge.x, edge.height};
skylines.add(skyline);
}
max.offer(edge.height);
} else{
max.remove(edge.height);
if (max.isEmpty() || edge.height > max.peek()) {
int[] skyline = new int[2];
skyline[0] = edge.x;
skyline[1] = (max.isEmpty() ? 0 : max.peek());
skylines.add(skyline);
}
}
}
return skylines;
}
}
class Edge {
int x;
int height;
boolean is_start;
public Edge(int x, int height, boolean is_start) {
this.x = x;
this.height = height;
this.is_start = is_start;
}
}
[LeetCode#218] The Skyline Problem的更多相关文章
- [LeetCode] 218. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- Java for LeetCode 218 The Skyline Problem【HARD】
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- LeetCode 218. The Skyline Problem 天际线问题(C++/Java)
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- 218. The Skyline Problem (LeetCode)
天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...
- [LeetCode] 281. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- 218. The Skyline Problem
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- 218. The Skyline Problem *HARD* -- 矩形重叠
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode] The Skyline Problem
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
随机推荐
- web开发第一周
第一天:HTML基础内容. 超文本标记语言,Hyper Text Makeup Language. 列表(清单),表格,框架,和表单,四个方法还不是很熟练. 列表,list,分OL和UL,表格的每个单 ...
- 使用反射让Spinner选择同一选项时触发onItemSelected事件
翻看源码,Spinner判断是否触发onItemSelected,是在它的基类AdapterView里面做的: void checkSelectionChanged() { if ((mSelecte ...
- IOS开发中针对UIImageView的几种常用手势
// // ViewController.m // 05-手势 // // Created by wanghy on 15/9/21. // Copyright (c) 2015年 wangh ...
- 关于C++对汉字拼音的处理(2)
对于前面获取字符串汉字全拼音的功能,大家应该有个了解了.现在我又综合广大网友流传的获取字符串汉字拼音首字母的功能进行了整理.介绍如下 这个功能写的稍微有点复杂 使用3个函数解决了获取字符串汉字首拼音串 ...
- python 自动化之路 logging日志模块
logging 日志模块 http://python.usyiyi.cn/python_278/library/logging.html 中文官方http://blog.csdn.net/zyz511 ...
- O_NONBLOCK模式下写fifo的注意事项
后台网络通信框架一般采用fifo来作为事件通知的机制:创建一个fifo,然后以非阻塞读和非阻塞写的方式打开fifo,然后把fd加到epoll里面,作为通知网络事件的fd. 在这里有个隐晦的问题容易被忽 ...
- The test form is only available for requests from the local machine 解决方法
protocolsdocumentationsoapweb 当您尝试从远程计算机访问 Web 服务时,不会显示“调用”按钮.并且,您会收到以下错误信息: The test form is only ...
- javascript 老王开车去东北
[Decode error - output not utf-8] 魔女 飞 奔驰 去 华南 [Finished in 1.1s] 需要变化的对象进行隔离.正是编程的乐趣之处 /** * by Jac ...
- PHP程序缓存之文件缓存处理方式
PHP程序缓存之文件缓存处理方式在开发程序过程中,缓存的设置大大提升程序效率,减小数据库负载.基本配置缓存和常规配置缓存 基本配置缓存在项目开发中类似这样子的格式: 文件:config.php $CF ...
- Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks(1)
今天和陈驰,汪鑫讨论了一下,借此记录一下想法. 关于这篇论文,要弄清的地方有: 1.LSTMtree到底是从上往下还是从下往上学的,再确认一下 2.关于每个节点的标注问题 3.label的值到底该怎么 ...