bzoj1486
这里学了一个新知识叫分数规划
这道题目是求∑w[i]/S最小
首先二分答案k,然后
如果某个环∑w[i]/S<=k即
∑w[i]<=k*S-->∑w[i]-k*S<=0--->∑(w[i]-k)<=0
所以对于原图每条边变为w[i]-k,如果存在负圈,那么k还可以更小,否则反之
判负环可以用spfa,而这里由于我们只要找到一个负圈即可
所以我们用dfs类型的spfa而不用bfs型
这里有关于spfa的dfs和bfs比较
http://wenku.baidu.com/link?url=D8kKnPDyfVfUbp7FlkM6PV484bd_ikEPvZnHkgwquiqapU4rlbgxUzsF1M9ck3pu7sBpQlwrERWsMoyWTRE7PacJ_zsAPliqlt07wKY-olO
const eps=1e-9;
type node=record
po,next:longint;
len:extended;
end; var w:array[..] of node;
p:array[..] of longint;
d:array[..] of extended;
v:array[..] of boolean;
x,y,n,m,i,len:longint;
z,l,r,mid:extended; procedure add(x,y:longint;z:extended);
begin
inc(len);
w[len].po:=y;
w[len].len:=z;
w[len].next:=p[x];
p[x]:=len;
end; function dfs(x:longint):boolean;
var i,y:longint;
begin
v[x]:=true;
i:=p[x];
while i<> do
begin
y:=w[i].po;
if d[y]>d[x]+w[i].len-mid then
begin
if not v[y] then
begin
d[y]:=d[x]+w[i].len-mid;
if dfs(y) then exit(true)
end
else exit(true);
end;
i:=w[i].next;
end;
v[x]:=false;
exit(false);
end; function check:boolean;
var i:longint;
begin
for i:= to n do
d[i]:=;
fillchar(v,sizeof(v),false);
for i:= to n do
if dfs(i) then exit(true);
exit(false);
end; begin
readln(n,m);
l:=;
r:=-;
for i:= to m do
begin
readln(x,y,z);
add(x,y,z);
if z>r then r:=z;
if z<l then l:=z;
end;
while l+eps<r do
begin
mid:=(l+r)/;
if check then r:=mid
else l:=mid;
end;
writeln(l::);
end.
bzoj1486的更多相关文章
- 【bzoj1486】 HNOI2009—最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 (题目链接) 题意 给出一张有向图,规定一个数值u表示图中一个环的权值/环中节点个数.求最小的 ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- 【BZOJ1486】最小圈(分数规划)
[BZOJ1486]最小圈(分数规划) 题面 BZOJ 洛谷 求图中边权和除以点数最小的环 题解 分数规划 二分答案之后将边权修改为边权减去二分值 检查有无负环即可 #include<iostr ...
- bzoj1486: [HNOI2009]最小圈
二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...
- 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 分数规划(Bzoj1486: [HNOI2009]最小圈)
题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...
随机推荐
- 轻松应对C10k问题
http://blog.csdn.net/u011011917/article/details/17203539 传统的.教科书里的I/O复用等待函数select/poll在处理数以万计的客户端连接时 ...
- apache2.2 + tomcat6 整合以及集群配置整理
运行环境:apache2.2.X + tomcat6.0.X + window xp 1. 安装Apache,服务启动后在浏览器中输入http://localhost进行测试,如果能看到一个" ...
- 一、Maven环境搭建(windows 环境)
所需工具 : JDK 1.7 java 环境 Maven 3.3.9 下载最新版本 Windows 7 注 Maven 3.2 要求 JDK 1.6 或以上版本, 而 Maven 3.0/3. ...
- Jstl标签库/Filter过滤器
JSTLJSP Standard Tag Library JSP标准标签库 是Sun公司定义的一套标准,由Apache组织基于这套标准开发的一套标准库之后又转给Sun公司被称为JSTL,成为了java ...
- android中相关的图形类
Bitmap - 称作位图,一般位图的文件格式后缀为bmp,当然编码器也有很多如RGB565.RGB888.作为一种逐像素的显示对象执行效率高,但是缺点也很明显存储效率低.我们理解为一种存储对象比较好 ...
- App.Config 在windows 服务中的应用问题
今天使用Windows服务 打包是使用的 Installsheild Limited Edition 2012 制作好后发现 运行安装包的时候 一直报错 后来发现ConfigurationManage ...
- Java实战之01Struts2-05contextMAP、EL、OGNL
十五.contextMap 1.动作类的生命周期 明确:动作类是多例的,每次动作访问,动作类都会实例化.所以是线程安全的.与Struts1的区别是,struts1的动作类是单例的. 2.请求动作的数据 ...
- 09.25日记(2014年9月25日23:22:06)用java这么多年面向对象我真的懂了吗,测试先行理念会玩吗
二胡 (1)应该找些书来看看,工作N年并不代表就有N年的工作经验. (2)DiaTransit02,DiaDept02,DiaAirport02,DiaHighway02.都具有x,y属性为何不设计一 ...
- ZOJ 1091 (HDU 1372) Knight Moves(BFS)
Knight Moves Time Limit: 2 Seconds Memory Limit: 65536 KB A friend of you is doing research on ...
- ubuntu zendDebugger.so 加载不上的问题
参考文章 http://blog.sina.com.cn/s/blog_6612d5810101dapf.html 装zenDdebugger是为了在eclipse中调试用!!!!!!!结果搞了半 ...