bzoj2427: [HAOI2010]软件安装
Description
现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。
但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。
我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。
Input
第1行:N,
M
(0<=N<=100,
0<=M<=500)
第2行:W1,
W2, ... Wi, ..., Wn (0<=Wi<=M
)
第3行:V1,
V2, ..., Vi, ..., Vn (0<=Vi<=1000
)
第4行:D1,
D2, ..., Di, ..., Dn(0<=Di<=N,
Di≠i
)
Output
一个整数,代表最大价值。
Sample Input
5 5 6
2 3 4
0 1 1
Sample Output
HINT
Source
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
ok=;
for (ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
const int maxn=;
const int maxm=;
const int inf=;
int n,m,a[maxn],b[maxn],x,ans;
int f[maxn][maxm],g[maxm];
int idx,dfn[maxn],low[maxn],stack[maxn],top,cnt,bel[maxn],siz[maxn],val[maxn],deg[maxn];
bool in[maxn],bo[maxn];
struct Graph{
int tot,now[maxn],son[maxn],pre[maxn];
void put(int a,int b){pre[++tot]=now[a],now[a]=tot,son[tot]=b;}
void dfs(int u){
dfn[u]=low[u]=++idx,stack[++top]=u,in[u]=;
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if (!dfn[v]) dfs(v),low[u]=min(low[u],low[v]);
else if (in[v]) low[u]=min(low[u],dfn[v]);
if (dfn[u]==low[u]){
int v; ++cnt;
do{v=stack[top--],bel[v]=cnt,siz[cnt]+=a[v],val[cnt]+=b[v],in[v]=;}while (u!=v);
}
}
/*void dp(int u){
bo[u]=1;
memset(f[u],195,sizeof(f[u]));
f[u][siz[u]]=val[u];
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (!bo[v]){
dp(v);
memcpy(g,f[u],sizeof(g));
for (int i=0;i<=m;i++) for (int j=m;j>=i;j--) g[j]=max(g[j],f[v][i]+f[u][j-i]);
memcpy(f[u],g,sizeof(g));
}
f[u][0]=max(f[u][0],0);
}*/
/*void dp(int u,int m){
//cout<<u<<' '<<m<<endl;
bo[u]=1;
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (!bo[v]){
for (int i=0;i<=m;i++) f[v][i]=f[u][i];
dp(v,m-siz[v]);
for (int i=siz[v];i<=m;i++) f[u][i]=max(f[u][i],f[v][i-siz[v]]+val[v]);
}
}*/
void dp(int u,int low){
bo[u]=;
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (!bo[v]){
for (int i=low;i<=m-siz[v];i++) f[v][i+siz[v]]=f[u][i]+val[v];
dp(v,low+siz[v]);
for (int i=low+siz[v];i<=m;i++) f[u][i]=max(f[u][i],f[v][i]);
}
}
}G1,G2;
int main(){
read(n),read(m);
for (int i=;i<=n;i++) read(a[i]);
for (int i=;i<=n;i++) read(b[i]);
for (int i=;i<=n;i++) read(x),G1.put(x,i);
for (int i=;i<=n;i++) if (!dfn[i]) G1.dfs(i);
for (int u=;u<=n;u++) for (int p=G1.now[u],v=G1.son[p];p;p=G1.pre[p],v=G1.son[p])
if (bel[u]!=bel[v]) G2.put(bel[u],bel[v]),deg[bel[v]]++;
for (int u=;u<=n;u++) if (!deg[bel[u]]) G2.put(bel[],bel[u]);
//G2.dp(bel[0]);
//G2.dp(bel[0],m);
G2.dp(bel[],);
for (int i=;i<=m;i++) ans=max(ans,f[bel[]][i]);
printf("%d\n",ans);
return ;
}
bzoj2427: [HAOI2010]软件安装的更多相关文章
- [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1987 Solved: 791[Submit][Statu ...
- bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1053 Solved: 424[Submit][Statu ...
- BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- 题解【bzoj2427 [HAOI2010]软件安装】
Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...
- [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP
题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)
题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...
- [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp
<题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...
- BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包
分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...
- [BZOJ2427][HAOI2010]软件安装(tarjan+树形DP)
如果依赖关系出现环,那么对于一个环里的点,要么都选要么都不选, 所以每个环可以当成一个点,也就是强连通分量 然后就可以构造出一颗树,然后树形背包瞎搞一下就行了 注意要搞一个虚拟节点当根节点 Code ...
随机推荐
- Android 读取手机短信
获取android手机短信需要在AndroidManifest.xml加权限: <uses-permission android:name="android.permission.RE ...
- java.sql.SQLException: Lock wait timeout exceeded --转
org.springframework.dao.CannotAcquireLockException 的解决> 直接上 bug 的详细信息: 2012-03-12 15:20:31 XmlBea ...
- Io_Language
Object ancestor := method ( prototype := self proto if (prototype != Obejct, writeln ("Slots of ...
- android开发之使用上下文菜单
android中的上下文菜单类似于PC上的鼠标右键单击,不同的是android上没有鼠标这一概念,更谈不上右键单击,在android中,一般是长按某个View,调出上下文菜单.与OptionsMenu ...
- MySQL特殊语法---replace into
MySQL中有这样的SQL语句 1. replace into tbl_name(col_name, ...) values(...) 2. replace into tbl_name(col_nam ...
- 【转】浅谈Java中的hashcode方法(这个demo可以多看看)
浅谈Java中的hashcode方法 哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率.在Java的Object类中有一个方法: public native i ...
- bootstrap paginator 与 bootstrap3兼容
bootstrap paginator可支持bootstrap2 和bootstrap3. 默认的下载包中支持2,需要手动修改才能支持bootstrap3.具体方法:找到bootstrap-pagin ...
- 安装oracle pl/sql developer
1.在官网上下载oracle 11g R2版本的数据库,直接常规安装.数据库可以下载32bit. 2.在这里下载oracle client (32bit)http://www.oracle.com/t ...
- 什么是NSTimer
本文主要是介绍什么是NSTimer,具体使用请参考上一篇博客. 1.什么是NSTimer? NSTimer就是timer就是一个能在从现在开始的后面的某一个时刻或者周期性的执行我们指定的方法的对象. ...
- C#下如何用NPlot绘制期货股票K线图(3):设计要显示的股票价格图表窗口并定义相应类的成员及函数
[内容简介] 上一篇介绍了要显示K线图所需要的数据结构,及要动态显示K线图,需要动态读取数据文件必需的几个功能函数.本篇介绍要显示蜡烛图所用到的窗口界面设计及对应类定义.下面分述如下: [窗口界面] ...