[HDU 4549] M斐波那契数列
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1609 Accepted Submission(s): 460
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
6 10 2
60
F(n)=F(n-1)*F(n-2)
F(1)=a;
F(2)=b;
F(3)=a^1*b^1
F(4)=a^1*b^2
F(5)=a^2*b^3
F(6)=a^3*b^5
F(n)=a^f(n'-1)*b^f(n'), f(n')为斐波拉契数列
这样就可以先算出F(n)对应f(n')、f(n'-1),再二分快速幂,F(n)=a^f(n'-1)%MOD*b^f(n')%MOD
另外由于n比较大且MOD为质数,则根据费马小定理得:F(n)=a^(f(n'-1)%(MOD-1)%MOD) * b^(f(n')%(MOD-1))%MOD
注意这里n'和n不一样,当n为3时,f(n')=1,不妨让n'=n-2...
#include <iostream>
#include <cstdio>
using namespace std;
#define MOD 1000000007
#define ll __int64
#define N 2 ll quickadd(ll a,ll b) //矩阵快速加,防溢出,其实可以不用这个
{
ll ret=;
while(b)
{
if(b&)
{
ret+=a;
if(ret>=MOD) ret-=MOD;
}
a<<=;
if(a>=MOD) a-=MOD;
b>>=;
}
return ret;
}
ll quickpow(ll a,ll b) //矩阵快速幂
{
ll ret=;
while(b)
{
if (b&) ret=quickadd(a,ret);
a=quickadd(a,a);
b>>=;
}
return ret;
}
void mul(ll a[N][N],ll b[N][N]) //矩阵相乘
{
ll i,j,k;
ll c[N][N]={};
for(i=;i<N;i++)
{
for(j=;j<N;j++)
{
for(k=;k<N;k++)
{
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%(MOD-);
}
}
}
for(i=;i<N;i++)
{
for(j=;j<N;j++)
{
a[i][j]=c[i][j];
}
}
}
int main()
{
ll A,B,n;
while(scanf("%I64d%I64d%I64d",&A,&B,&n)!=EOF)
{
if(n==) printf("%I64d\n",A%MOD);
else if(n==) printf("%I64d\n",B%MOD); //特判0,1
else
{
n-=;
ll a[N][N]={,},b[N][N]={,,,};
while(n)
{
if(n&)mul(a,b);
mul(b,b);
n>>=;
}
ll k1=a[][];
ll k2=a[][];
ll ans=;
ans=ans*quickpow(A,k1)%MOD;
ans=ans*quickpow(B,k2)%MOD;
printf("%I64d\n",ans);
}
}
return ;
}
[HDU 4549] M斐波那契数列的更多相关文章
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
- HDU 4549 M斐波那契数列(矩阵幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549 题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]. 思路:手算一下可以发现 ...
- HDU 1316 (斐波那契数列,大数相加,大数比较大小)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...
- HDU 5451 广义斐波那契数列
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
随机推荐
- Wix installer: suppressing the License Dialog
Reference Link: http://blog.robseder.com/2014/02/20/more-on-wix-and-suppressing-the-license-dialog/ ...
- (转)使用inotify、inotify_add_watch、inotify_rm_watch、read编写监控程序
转自:http://blog.csdn.net/myarrow/article/details/7096460 inotify是什么 inotify是文件系统变化通知机制,在监听到文件系统变化后,会向 ...
- http数据包解析碰到gzip压缩格式的解压
其中在做http数据包临控时碰到gzip压缩格式,在网友发布的一些技术文章基础上,经过一段时间的研究.调试,终于解析成功.现将核心代码公布于此,希望能够和大家一起共同学习交流.注:以下代码需要依赖zl ...
- iis7以上版本权限控制
IIS7.5中(仅win7,win2008 SP2,win2008 R2支持),应用程序池的运行帐号,除了指定为LocalService,LocalSystem,NetWorkService这三种基本 ...
- SDC(3)–set_multicycle_path 最关键的一张图
上图意思是,假如使用 –setup option,默认约束的是 latch clock:假如使用 –hold option,默认约束的是 launch clock.箭头表示不同组合下时钟沿的移动方向. ...
- .net faq
http://www.indiabix.com/technical/dotnet/ http://www.codeproject.com/Articles/637480/Csharp-and-ASP- ...
- DB天气app冲刺第四天
今天卡壳了 做得很慢.. 明天继续 换一种思路试一下吧..
- Git Commit Template 提交模板
多人协作开发一个项目时,版本控制工具是少不了的,git是linux 内核开发时引入的一个优秀代码管理工具,利用它能很好使团队协作完成一个项目.为了规范团队的代码提交,也方便出版本时的release n ...
- ul 、ol li 继承原有样式的问题
如: 1.为什么我的服务器无法远程了? 2.为什么我的服务器总是自动重启? 3.为什么我的服务器总是自动重启? 以前写这种类型的列表,都是自己用键盘输入这些数字,其实不然,ul .ol li本身就自带 ...
- [JavaScript] js判断是否在微信浏览器中打开
用JS来判断了,经过查找资料终于实现了效果, function is_weixn(){ var ua = navigator.userAgent.toLowerCase(); if(u ...