M斐波那契数列

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1609    Accepted Submission(s): 460

Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
 
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 
Sample Input
0 1 0
6 10 2
 
Sample Output
0
60
 
Source
2013金山西山居创意游戏程序挑战赛——初赛(2)
 
详解:

F(n)=F(n-1)*F(n-2)
F(1)=a;
F(2)=b;
F(3)=a^1*b^1
F(4)=a^1*b^2
F(5)=a^2*b^3
F(6)=a^3*b^5
F(n)=a^f(n'-1)*b^f(n'), f(n')为斐波拉契数列

这样就可以先算出F(n)对应f(n')、f(n'-1),再二分快速幂,F(n)=a^f(n'-1)%MOD*b^f(n')%MOD
另外由于n比较大且MOD为质数,则根据费马小定理得:F(n)=a^(f(n'-1)%(MOD-1)%MOD) * b^(f(n')%(MOD-1))%MOD
注意这里n'和n不一样,当n为3时,f(n')=1,不妨让n'=n-2...

#include <iostream>
#include <cstdio>
using namespace std;
#define MOD 1000000007
#define ll __int64
#define N 2 ll quickadd(ll a,ll b) //矩阵快速加,防溢出,其实可以不用这个
{
ll ret=;
while(b)
{
if(b&)
{
ret+=a;
if(ret>=MOD) ret-=MOD;
}
a<<=;
if(a>=MOD) a-=MOD;
b>>=;
}
return ret;
}
ll quickpow(ll a,ll b) //矩阵快速幂
{
ll ret=;
while(b)
{
if (b&) ret=quickadd(a,ret);
a=quickadd(a,a);
b>>=;
}
return ret;
}
void mul(ll a[N][N],ll b[N][N]) //矩阵相乘
{
ll i,j,k;
ll c[N][N]={};
for(i=;i<N;i++)
{
for(j=;j<N;j++)
{
for(k=;k<N;k++)
{
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%(MOD-);
}
}
}
for(i=;i<N;i++)
{
for(j=;j<N;j++)
{
a[i][j]=c[i][j];
}
}
}
int main()
{
ll A,B,n;
while(scanf("%I64d%I64d%I64d",&A,&B,&n)!=EOF)
{
if(n==) printf("%I64d\n",A%MOD);
else if(n==) printf("%I64d\n",B%MOD); //特判0,1
else
{
n-=;
ll a[N][N]={,},b[N][N]={,,,};
while(n)
{
if(n&)mul(a,b);
mul(b,b);
n>>=;
}
ll k1=a[][];
ll k2=a[][];
ll ans=;
ans=ans*quickpow(A,k1)%MOD;
ans=ans*quickpow(B,k2)%MOD;
printf("%I64d\n",ans);
}
}
return ;
}

[HDU 4549] M斐波那契数列的更多相关文章

  1. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  2. HDU 4549 M斐波那契数列(矩阵快速幂)

    题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...

  3. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  4. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  5. hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...

  6. HDU 4549 M斐波那契数列(矩阵幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549 题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]. 思路:手算一下可以发现 ...

  7. HDU 1316 (斐波那契数列,大数相加,大数比较大小)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1316 Recall the definition of the Fibonacci numbers: ...

  8. HDU 5451 广义斐波那契数列

    这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = ...

  9. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

随机推荐

  1. WTL 中的常见问题汇总

    1.CRect,CPoint,CSize的使用 WTL提供了CString,CRect,CPoint和CSize,可能后来版本的ATL也提供了,WTL作者推荐使用ATL的实现,所以:#include ...

  2. 学习C++ Primer 的个人理解(十)

    标准库没有给每个容器都定义成员函数来实现 查找,替换等操作.而是定义了一组泛型算法,他们可以用于不同类型的元素或多种容器类型. 迭代器令算法不依赖与容器 算法永远不会执行容器的操作 算法本身不会执行容 ...

  3. Poj 2159 / OpenJudge 2159 Ancient Cipher

    1.链接地址: http://poj.org/problem?id=2159 http://bailian.openjudge.cn/practice/2159 2.题目: Ancient Ciphe ...

  4. http数据包解析碰到gzip压缩格式的解压

    其中在做http数据包临控时碰到gzip压缩格式,在网友发布的一些技术文章基础上,经过一段时间的研究.调试,终于解析成功.现将核心代码公布于此,希望能够和大家一起共同学习交流.注:以下代码需要依赖zl ...

  5. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  6. MVC-Model数据注解(二)-自定义

    由于系统的数据注解肯定不适合所有的场合,所以有时候我们需要自定义数据注解.         自定义数据注解有两种,一种是直接写在模型对象中,这样做的好处是验证时只需要关心一种模型对象的验证逻辑,缺点也 ...

  7. MySQL 5.7 启用查询日志

    MySQL版本:5.7 新版本的 my.ini 文件改动了,导致原先启用查询日志的方法不再适用 新版本的启用方法如下: 1. 修改 C:\ProgramData\MySQL\MySQL Server ...

  8. Spring MVC 注解和XML的区别

      注解与XML配置的区别 注解:是一种分散式的元数据,与源代码紧绑定. xml:是一种集中式的元数据,与源代码无绑定. 因此注解和XML的选择上可以从两个角度来看:分散还是集中,源代码绑定/无绑定. ...

  9. 记录android学习、开发过程温故知新

    记录android学习.开发过程温故知新

  10. backbone案例

    http://www.kuqin.com/webpagedesign/20120807/324101.html http://udonmai.com/code/todos-backbone%E6%A1 ...