解:有两种做法......

第一种,按照秘密袭击coat的套路,我们只需要求出即可。因为一种操作了i次的方案会被恰好计数i次。

那么这个东西怎么求呢?直接用FWT的思想,对于一个状态s,求出选择s所有子集的概率ps。那么第i次操作后是s的子集的概率就是psi

设fs表示第i次操作之后是s的子集的概率。

把所有的f求出来之后做一次IFWT即可。然后我们对于所有非全集求和。

参考资料

 #include <bits/stdc++.h>

 const int N = , M = ;
const double eps = 1e-; double f[M], p[M], w[M];
int cnt[M], pw[M], n, lm; inline void FWT_or(double *a, int n, int f) {
for(int len = ; len < n; len <<= ) {
for(int i = ; i < n; i += (len << )) {
for(int j = ; j < len; j++) {
a[i + len + j] += f * a[i + j];
}
}
}
return;
} int main() {
scanf("%d", &n);
lm = << n;
for(int i = ; i < lm; i++) {
scanf("%lf", &p[i]);
w[i] = p[i];
if(i) {
cnt[i] = + cnt[i - (i & (-i))];
}
if(i > ) {
pw[i] = pw[i >> ] + ;
}
}
FWT_or(p, lm, );
for(int i = ; i < lm; i++) {
if(i != lm - && p[i] > - eps) {
puts("INF");
return ;
}
f[i] = 1.0 / ( - p[i]);
}
FWT_or(f, lm, -);
double ans = ;
for(int i = ; i < lm - ; i++) {
ans += f[i];
}
printf("%.10f\n", ans);
return ;
}

AC代码

第二种:Min-Max容斥。

设fs为把状态s的所有元素中至少一个变成1的期望次数。

同样是对步数0~∞求和,每次的概率是(没选到)i。最后Min-Max容斥统计答案。

 #include <bits/stdc++.h>

 const int N = , M = ;
const double eps = 1e-; double f[M], p[M], w[M];
int cnt[M], pw[M], n, lm; inline void FWT_or(double *a, int n, int f) {
for(int len = ; len < n; len <<= ) {
for(int i = ; i < n; i += (len << )) {
for(int j = ; j < len; j++) {
a[i + len + j] += f * a[i + j];
}
}
}
return;
}
/*
2
0.25 0.25 0.25 0.25 */
int main() {
scanf("%d", &n);
lm = << n;
for(int i = ; i < lm; i++) {
scanf("%lf", &p[i]);
w[i] = p[i];
if(i) {
cnt[i] = + cnt[i - (i & (-i))];
}
if(i > ) {
pw[i] = pw[i >> ] + ;
}
}
FWT_or(p, lm, );
for(int i = ; i < lm; i++) {
if(i != lm - && p[i] > - eps) {
printf("INF\n");
return ;
}
//printf("p %d = %lf \n", i, p[i]);
f[i] = 1.0 / ( - p[(lm - ) ^ i]);
}
//FWT_or(f, lm, -1);
double ans = ;
for(int i = ; i < lm; i++) {
if(cnt[i] & ) ans += f[i];
else ans -= f[i];
}
printf("%.10f\n", ans);
return ;
}

AC代码

BZOJ4036 按位或的更多相关文章

  1. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

  2. Min-Max容斥及其推广和应用

    概念 Min-Max容斥,又称最值反演,是一种对于特定集合,在已知最小值或最大值中的一者情况下,求另一者的算法. 例如: $$max(a,b)=a+b-min(a,b) \\\ max(a,b,c)= ...

  3. BZOJ4036 [HAOI2015]按位或 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...

  4. 【BZOJ4036】[HAOI2015]按位或 FWT

    [BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...

  5. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  6. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

  7. BZOJ4036 HAOI2015按位或(概率期望+容斥原理)

    考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...

  8. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  9. 【bzoj4036】按位或

    Portal --> bzoj4036 Solution  感觉容斥的东西内容有点qwq多啊qwq还是以题目的形式来慢慢补档好了  这里补的是min-max容斥 ​    其实min-max容斥 ...

随机推荐

  1. DVWA 黑客攻防演练(一) 介绍及安装

    原本是像写一篇 SELinux 的文章的.而我写总结文章的时候,总会去想原因是什么,为什么会有这种需求.而我发觉 SELinux 的需求是编程人员的神奇代码或者维护者的脑袋短路而造成系统容易被攻击.就 ...

  2. Git在商业项目中的使用流程

    一 引言 这一篇文章还是记录我在杭州工作的总结. 我刚来公司的时候,对Git的使用很头痛,因为在学校里面很少用这个东西,即使用,一般也只有一个分支,不会出现代码冲突和代码合并的情况.但是公司里面一个项 ...

  3. MySQL5.7参数log_timestamps

    最近测试MySQL 5.7.21  Community Server这个版本的MySQL数据库时,发现其错误日志的时间跟系统当前时间不一致,后面检查发现日期时间格式都是UTC时间,查了一下相关资料,原 ...

  4. WinServer-FTP搭建

    FTP服务器(File Transfer Protocol Server)是在互联网上提供文件存储和访问服务的计算机,它们依照FTP协议提供服务. FTP是File Transfer Protocol ...

  5. mmz-asio4delphi死链接的解决办法

    最近一段时间,因为忙于网络的项目,特意到网上找了些例子,特意花时间研究了一下马敏钊写的 mmz-asio4delphi 感觉很好用,不过深入研究之后,发现一个问题. 马大的这个代码,会产生死链接.   ...

  6. c/c++ 多线程 等待一次性事件 future概念

    多线程 等待一次性事件 future概念 背景:有时候,一个线程只等待另一个线程一次,而且需要它等待的线程的返回值. 案例:滴滴叫车时,点完了叫车按钮后,叫车的后台线程就启动了,去通知周围的出租车.这 ...

  7. ThinkPHP中使用聚合查询去重求和

    我使用的是TP5.1 首先去model类里面设置failed条件: 想要的效果: 数据库展示: 代码: eturn self::alias('gr') ->join('gs_staff gs', ...

  8. ssr

    使用Nuxt.js改造已有项目的方法 https://www.jb51.net/article/145203.htm

  9. MapReduce shuffle过程剖析及调优

    MapReduce简介 在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的.数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问 ...

  10. SQL NOT NULL 约束

    SQL NOT NULL 约束 NOT NULL 约束强制列不接受 NULL 值. NOT NULL 约束强制字段始终包含值.这意味着,如果不向字段添加值,就无法插入新记录或者更新记录. 下面的 SQ ...