科学计算和可视化(numpy及matplotlib学习笔记)
网上学习资料:https://2d.hep.com.cn/1865445/9
numpy库内容:

| 函数 | 描述 |
| np.array([x,y,z],dtype=int) | 从Python列表和元组创造数组 |
| np.arange(x,y,i) | 创建一个从x到y,步长为 i 的数组 |
| np.linspace(x,y,n) | 创建一个从x到y,等分成 n 个元素的数组 |
| np.indices((m,n)) | 创建一个 m 行 n 列的矩阵 |
| np.random.rand(m,n) | 创建一个 m 行 n 列的随机数组 |
| np.ones((m,n),dtype) | 创建一个 m 行 n 列全为 1 的数组,dtype是数据类型 |
| np.empty((m,n),dtype) | 创建一个 m 行 n 列全为0的数组,dtype是数据类型 |
实例(教材):
#e17.1HandDrawPic.py
from PIL import Image
import numpy as np
vec_el = np.pi/2.2 # 光源的俯视角度,弧度值
vec_az = np.pi/4. # 光源的方位角度,弧度值
depth = 10. # (0-100)
im = Image.open('fcity.jpg').convert('L')
a = np.asarray(im).astype('float')
grad = np.gradient(a) #取图像灰度的梯度值
grad_x, grad_y = grad #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el) #光源对z 轴的影响
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
a2 = 255*(dx*uni_x + dy*uni_y + dz*uni_z) #光源归一化
a2 = a2.clip(0,255)
im2 = Image.fromarray(a2.astype('uint8')) #重构图像
im2.save('fcityHandDraw.jpg

matplotlib库主要内容:

实例(教材):带阴影的坐标系
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 1000)
y = np.cos(2*np.pi*x) * np.exp(-x)+0.8
plt.plot(x,y,'k',color='r',label="$exp-decay$",linewidth=3)
plt.axis([0,6,0,1.8])
ix = (x>0.8) & (x<3)
plt.fill_between(x, y ,0, where = ix,
facecolor='grey', alpha=0.25)
plt.text(0.5*(0.8+3), 0.2, r"$\int_a^b f(x)\mathrm{d}x$",
horizontalalignment='center')
plt.legend()
plt.show()

实例(教材):DOTA能力雷达图
#e19.1DrawRadar
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
labels = np.array(['综合', 'KDA', '发育', '推进', '生存','输出'])
nAttr = 6
data = np.array([7, 5, 6, 9, 8, 7]) #数据值
angles = np.linspace(0, 2*np.pi, nAttr, endpoint=False)
data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))
fig = plt.figure(facecolor="white")
plt.subplot(111, polar=True)
plt.plot(angles,data,'bo-',color ='g',linewidth=2)
plt.fill(angles,data,facecolor='g',alpha=0.25)
plt.thetagrids(angles*180/np.pi, labels)
plt.figtext(0.52, 0.95, 'DOTA能力值雷达图', ha='center')
plt.grid(True)
plt.show()

实例:python成绩雷达图
import numpy as np
import matplotlib.pyplot as plt
labels = np.array(['第二周','第三周','第四周','第五周','第六周'])
dataLenth =5
data = np.array([100,93.3,100,110,60])
angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False)
data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.plot(angles, data, 'ro-', linewidth=2)
ax.set_thetagrids(angles * 180/np.pi, labels, fontproperties="SimHei")
ax.set_title("呆.的python成绩雷达图", va='bottom', fontproperties="SimHei")
ax.grid(True)
plt.show()

、
科学计算和可视化(numpy及matplotlib学习笔记)的更多相关文章
- python科学计算和可视化学习报告
一丶numpy和matplotlib学习笔记 1. NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Pyth ...
- Python科学计算三维可视化(整理完结)
中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...
- 科学计算三维可视化---Mlab基础(数据可视化)
推文:科学计算三维可视化---TVTK库可视化实例 使用相关函数:科学计算三维可视化---Mlab基础(管线控制函数) 一:mlab.pipeline中标量数据可视化 通过持续实例,来感受mlab对数 ...
- 科学计算三维可视化---Mlab基础(鼠标选取交互操作)
一:鼠标选取介绍 二:选取红色小球分析 相关方法:科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数) 1.小球场景初始化建立 import numpy as np from maya ...
- 科学计算三维可视化---Mlab基础(管线控制函数)
科学计算三维可视化---TVTK管线与数据加载(可视化管线和图像管线了解) 科学计算三维可视化---Mayavi入门(Mayavi管线) Mlab管线控制函数的调用 Sources:数据源 Filte ...
- Matplotlib学习笔记(二)
原 Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .car ...
- Matplotlib学习笔记(一)
原 matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .ca ...
- windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等
安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...
- 『科学计算』可视化二元正态分布&3D科学可视化实战
二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算 ...
随机推荐
- C# [WIN32] [API] Global Hook
NativeMethods.cs: using System; using System.Runtime.InteropServices; namespace GlobalHook { interna ...
- hdu 1754 I Hate It 解题报告(线段树 代码+注释)
题目链接:传送门 I Hate It Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- Android Touch事件相关源码【Android SourceCode 2.3.6】
2018-05-31 17:23:46 Note: 这里的源码来自Android 2.3.6,这个版本的代码比较简单,适合理解Touch事件的传递原理.后续版本源码复杂了很多,但是原理都是类似的. 2 ...
- form表单提交到Servlet后,弹出对话框,然后在跳转页面
在Servlet中添加一下代码即可 out.print("<script>alert('添加成功!');window.location='index.jsp';</scri ...
- Annotation(注解)介绍
Annotation(注解)是什么: Annotation(注解) 官方的定义: An annotation is a form of metadata, that can be added t ...
- bootstrap-fileinput视频上传
在页面编写一个input框: <input id="input-repl-3a" name="videoFileAddress" type="f ...
- Oracle 多行变一行
https://blog.csdn.net/rainyspring4540/article/details/50231521
- 机器学习笔记(四)Logistic回归模型实现
一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取 ...
- 网络协议中HTTP,TCP,UDP,Socket,WebSocket的优缺点/区别
先说一下网络的层级:由下往上分为 物理层.数据链路层.网络层.传输层.会话层.表示层和应用层 1.TCP和UDP TCP:是面向连接的一种传输控制协议.属于传输层协议.TCP连接之后,客户端和服务器可 ...
- redis cluster的conf配置文件配置
redis cluster的conf配置文件配置 master配置文件如下: bind 127.0.0.1 port tcp-backlog timeout tcp-keepalive logleve ...