本文实例讲述了Python函数装饰器原理与用法。分享给大家供大家参考,具体如下:

装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等应用场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

严格来说,装饰器只是语法糖,装饰器是可调用的对象,可以像常规的可调用对象那样调用,特殊的地方是装饰器的参数是一个函数。

import time
#遵守开放封闭原则
def foo():
start = time.time()
# print(start) # 1504698634.0291758从1970年1月1号到现在的秒数,那年Unix诞生
time.sleep(3)
end = time.time()
print('spend %s'%(end - start))
foo()

bar()、bar2()也有类似的需求,怎么做?再在bar函数里调用时间函数?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门设定时间:

import time
def show_time(func):
start_time=time.time()
func()
end_time=time.time()
print('spend %s'%(end_time-start_time))
def foo():
print('hello foo')
time.sleep(3)
show_time(foo)

但是这样的话,你基础平台的函数修改了名字,容易被业务线的人投诉的,因为我们每次都要将一个函数作为参数传递给show_time函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行foo(),但是现在不得不改成show_time(foo)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

def show_time(f):
def inner():
start = time.time()
f()
end = time.time()
print('spend %s'%(end - start))
return inner
@show_time #foo=show_time(f)
def foo():
print('foo...')
time.sleep(1)
foo()
def bar():
print('bar...')
time.sleep(2)
bar()

输出结果:

foo...
spend 1.0005607604980469
bar...

函数show_time就是装饰器,它把真正的业务方法f包裹在函数里面,看起来像foo被上下时间函数装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

装饰器有2个特性,一是可以把被装饰的函数替换成其他函数, 二是可以在加载模块时候立即执行

def decorate(func):
print('running decorate', func)
def decorate_inner():
print('running decorate_inner function')
return func()
return decorate_inner
@decorate
def func_1():
print('running func_1')
if __name__ == '__main__':
print(func_1)
#running decorate <function func_1 at 0x000001904743DEA0>
# <function decorate.<locals>.decorate_inner at 0x000001904743DF28>
func_1()
#running decorate_inner function
# running func_1

通过args 和 *kwargs 传递被修饰函数中的参数

 def decorate(func):
def decorate_inner(*args, **kwargs):
print(type(args), type(kwargs))
print('args', args, 'kwargs', kwargs)
return func(*args, **kwargs)
return decorate_inner
@decorate
def func_1(*args, **kwargs):
print(args, kwargs)
if __name__ == '__main__':
func_1('', '', '', para_1='', para_2='', para_3='')
#返回结果
#<class 'tuple'> <class 'dict'>
# args ('1', '2', '3') kwargs {'para_1': '1', 'para_2': '2', 'para_3': '3'}
# ('1', '2', '3') {'para_1': '1', 'para_2': '2', 'para_3': '3'}

带参数的被装饰函数

 import time
# 定长
def show_time(f):
def inner(x,y):
start = time.time()
f(x,y)
end = time.time()
print('spend %s'%(end - start))
return inner
@show_time
def add(a,b):
print(a+b)
time.sleep(1)
add(1,2)

不定长

 import time
#不定长
def show_time(f):
def inner(*x,**y):
start = time.time()
f(*x,**y)
end = time.time()
print('spend %s'%(end - start))
return inner
@show_time
def add(*a,**b):
sum=0
for i in a:
sum+=i
print(sum)
time.sleep(1)
add(1,2,3,4)

带参数的装饰器

在上面的装饰器调用中,比如@show_time,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

 import time
def time_logger(flag=0):
def show_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
func(*args, **kwargs)
end_time = time.time()
print('spend %s' % (end_time - start_time))
if flag:
print('将这个操作的时间记录到日志中')
return wrapper
return show_time
@time_logger(flag=1)
def add(*args, **kwargs):
time.sleep(1)
sum = 0
for i in args:
sum += i
print(sum)
add(1, 2, 5)

@time_logger(flag=1) 做了两件事:

(1)time_logger(1):得到闭包函数show_time,里面保存环境变量flag

(2)@show_time   :add=show_time(add)

上面的time_logger是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器(一个含有参数的闭包函数)。当我 们使用@time_logger(1)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

叠放装饰器

执行顺序是什么

如果一个函数被多个装饰器修饰,其实应该是该函数先被最里面的装饰器修饰后(下面例子中函数main()先被inner装饰,变成新的函数),变成另一个函数后,再次被装饰器修饰

 def outer(func):
print('enter outer', func)
def wrapper():
print('running outer')
func()
return wrapper
def inner(func):
print('enter inner', func)
def wrapper():
print('running inner')
func()
return wrapper
@outer
@inner
def main():
print('running main')
if __name__ == '__main__':
main()
#返回结果
# enter inner <function main at 0x000001A9F2BCDF28>
# enter outer <function inner.<locals>.wrapper at 0x000001A9F2BD5048>
# running outer
# running inner
# running main

类装饰器

相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

 import time
class Foo(object):
def __init__(self, func):
self._func = func
def __call__(self):
start_time=time.time()
self._func()
end_time=time.time()
print('spend %s'%(end_time-start_time))
@Foo #bar=Foo(bar)
def bar():
print ('bar')
time.sleep(2)
bar() #bar=Foo(bar)()>>>>>>>没有嵌套关系了,直接active Foo的 __call__方法

标准库中有多种装饰器

例如:装饰方法的函数有property, classmethod, staticmethod; functools模块中的lru_cache, singledispatch,  wraps 等等

from functools import lru_cache
from functools import singledispatch
from functools import wraps

functools.wraps使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

 def foo():
print("hello foo")
print(foo.__name__)# foo
def logged(func):
def wrapper(*args, **kwargs):
print (func.__name__ + " was called")
return func(*args, **kwargs)
return wrapper
@logged
def cal(x):
resul=x + x * x
print(resul)
cal(2)
#
#cal was called
print(cal.__name__)# wrapper
print(cal.__doc__)#None
#函数f被wrapper取代了,当然它的docstring,__name__就是变成了wrapper函数的信息了。

使用装饰器会产生我们可能不希望出现的副作用, 例如:改变被修饰函数名称,对于调试器或者对象序列化器等需要使用内省机制的那些工具,可能会无法正常运行;

其实调用装饰器后,会将同一个作用域中原来函数同名的那个变量(例如下面的func_1),重新赋值为装饰器返回的对象;使用@wraps后,会把与内部函数(被修饰函数,例如下面的func_1)相关的重要元数据全部复制到外围函数(例如下面的decorate_inner)

 from functools import wraps
def decorate(func):
print('running decorate', func)
@wraps(func)
def decorate_inner():
print('running decorate_inner function', decorate_inner)
return func()
return decorate_inner
@decorate
def func_1():
print('running func_1', func_1)
if __name__ == '__main__':
func_1()
#输出结果
#running decorate <function func_1 at 0x0000023E8DBD78C8>
# running decorate_inner function <function func_1 at 0x0000023E8DBD7950>
# running func_1 <function func_1 at 0x0000023E8DBD7950>

---2019.11.21  21:13--多练习,熟能生巧--<https://www.jb51.net/article/167769.htm>

Python函数装饰器原理与用法详解《摘》的更多相关文章

  1. Python函数装饰器高级用法

    在了解了Python函数装饰器基础知识和闭包之后,开始正式学习函数装饰器. 典型的函数装饰器 以下示例定义了一个装饰器,输出函数的运行时间: 函数装饰器和闭包紧密结合,入参func代表被装饰函数,通过 ...

  2. python函数-装饰器

    python函数-装饰器 1.装饰器的原则--开放封闭原则 开放:对于添加新功能是开放的 封闭:对于修改原功能是封闭的 2.装饰器的作用 在不更改原函数调用方式的前提下对原函数添加新功能 3.装饰器的 ...

  3. 【python】redis基本命令和基本用法详解

    [python]redis基本命令和基本用法详解 来自http://www.cnblogs.com/wangtp/p/5636872.html 1.redis连接 redis-py提供两个类Redis ...

  4. Python @函数装饰器及用法

    1.函数装饰器的工作原理 函数装饰器的工作原理是怎样的呢?假设用 funA() 函数装饰器去装饰 funB() 函数,如下所示: #funA 作为装饰器函数 def funA(fn): #... fn ...

  5. Python @函数装饰器及用法(超级详细)

    函数装饰器的工作原理是怎样的呢?假设用 funA() 函数装饰器去装饰 funB() 函数,如下所示: #funA 作为装饰器函数 def funA(fn): #... fn() # 执行传入的fn参 ...

  6. Python 函数装饰器

    首次接触到装饰器的概念,太菜啦! Python 装饰器可以大大节省代码的编写量,提升代码的重复使用率.函数装饰器其本质也是一个函数,我们可以把它理解为函数中定义了一个子函数. 例如我们有这么一个需求, ...

  7. Python高手之路【四】python函数装饰器

    def outer(func): def inner(): print('hello') print('hello') print('hello') r = func() print('end') p ...

  8. python 函数 装饰器 内置函数

    函数 装饰器 内置函数 一.命名空间和作用域 二.装饰器 1.无参数 2.函数有参数 3.函数动态参数 4.装饰器参数 三.内置函数 salaries={ 'egon':3000, 'alex':10 ...

  9. Python 函数装饰器简明教程

    定义类的静态方法时,就使用了装饰器.其实面向对象中的静态方法都是使用了装饰器. @staticmethod def jump(): print(" 3 meters high") ...

随机推荐

  1. Java Annotation 刷课笔记(二)

    1.反射机制性能问题(安全检查) 1.1setAccessible 启用和禁用访问安全检查的开关,值为true,则指示反射的对象在使用时应该取消Java语言访问检查,值为false,则指示反射的对象应 ...

  2. Codeforces 957 水位标记思维题

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  3. JVM Direct Memory

    JVM除了堆内存.栈内存,还有DirectMemory内存,DirectMemory是java nio引入的. 在JDK1.4中新加入了NIO(New INput/Output)类,引入了一种基于通道 ...

  4. Python内置函数之filter map reduce

    Python内置函数之filter map reduce 2013-06-04 Posted by yeho Python内置了一些非常有趣.有用的函数,如:filter.map.reduce,都是对 ...

  5. NOIP2017 D2T2 宝藏

    洛谷P3959 其实就是一道暴力搜索题……只是需要一个状态压缩的剪枝比较难想而已 这根本不叫dfs!只是一个递归而已……开始就被dfs坑了 思路: 首先一个基本的预处理 数据范围n≤12,m≤5000 ...

  6. Alter改变终结

    #alter#删除date列但若表中只有一个字段无法使用drop删除ALTER TABLE z_staff_info_copy1 DROP `date`;ALTER TABLE z_staff_inf ...

  7. 面试题常考&必考之--js中的难点!!!原型链,原型(__proto__),原型对象(prototype)结合例子更易懂

    1>首先,我们先将函数对象认识清楚: 补充snow的另一种写法: var snow =function(){}; 2>其次:就是原型对象 每当我们定义一个函数对象的时候,这个对象中就会包含 ...

  8. CSS3画五角星和六角星

    最终想要实现的效果 一.五角星 在画五角星之前首先分析这个五角星是如何实现,由哪几个部分构成的,示意图如下: 三个顶角向上的三角形,通过设置旋转和定位相互重叠和拼接实现最终的五角星效果. 为了语义化和 ...

  9. Quick BI的SQL传参建模可以用在什么场景

    Quick B的SQL传参建模功能提供基于SQL的数据加工处理能力,减轻了IT支撑人员的工作量.在即席查询SQL中,我们用物理字段显示别名来表示参数的占位符,配置完占位符后,就可以在查询控件中进行参数 ...

  10. 【bzoj4137】[FJOI2015]火星商店问题

    *题目描述: 火星上的一条商业街里按照商店的编号1,2 ,…,n ,依次排列着n个商店.商店里出售的琳琅满目的商品中,每种商品都用一个非负整数val来标价.每个商店每天都有可能进一些新商品,其标价可能 ...