17-正交矩阵和Gram-Schmidt正交化
定义:如果一个矩阵,其转置与自身的乘积等于单位向量,那么该矩阵就是正交矩阵,该矩阵一般用Q来表示,即$Q^TQ=QQ^T=I$,也就是$Q^T=Q^{-1}$,即转置=逆
注意:正交矩阵一定是方阵,我们来举例一个正交矩阵
$Q=\left|\begin{array}{cc}{\cos \theta} & {-\sin \theta} \\ {\sin \theta} & {\cos \theta}\end{array}\right|$
$Q^{T}=\left|\begin{array}{cc}{\cos \theta} & {\sin \theta} \\ {-\sin \theta} & {\cos \theta}\end{array}\right|$
性质:有了上面正交矩阵的定义,微秒可以得到几个正交矩阵的性质
a)正交矩阵的行列式$|Q|=1$或者$|Q|=-1$,即行列式等于1或者-1,这个好推导,根据上面的定义,可知正交矩阵的行列式的平方与单位矩阵的行列式(为1)的平方相等
b)$Q^T=Q^{-1}$,并且也正交
c)如果矩阵$P$正交,那么矩阵$PQ$也正交
2)预备知识
a)正交向量:两个向量正交意味着两个向量的夹角是90°
17-正交矩阵和Gram-Schmidt正交化的更多相关文章
- MIT线性代数:17.正交矩阵和Cram-Schmidt正交化
- 施密特正交化 GramSchmidt
施密特正交化 GramSchmidt 施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特 ...
- 浅谈压缩感知(十九):MP、OMP与施密特正交化
关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 矩阵分解---QR正交分解,LU分解
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...
- QR分解迭代求特征值——原生python实现(不使用numpy)
QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...
- 【线性代数】标准正交矩阵与Gram-Schmidt正交化
1.标准正交矩阵 假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式: 则 若Q为方阵,由上面的式子则有 我们举例说明上述概念: 2.标准正交矩阵的好处 上面我们介绍了标准正交 ...
- 线性代数之——正交矩阵和 Gram-Schmidt 正交化
这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向 ...
- Golang, 以17个简短代码片段,切底弄懂 channel 基础
(原创出处为本博客:http://www.cnblogs.com/linguanh/) 前序: 因为打算自己搞个基于Golang的IM服务器,所以复习了下之前一直没怎么使用的协程.管道等高并发编程知识 ...
随机推荐
- MAN VGEXTEND
VGEXTEND(8) VGEXTEND(8) NAME/名称 vgexten ...
- R语言把DataFrame的一行变成向量
在R语言里面,DataFrame的一列数据本质上可以认为是一个向量或列表,但是一行数据不是. 今天有一个31列的数据集,由于放在第一行的变量名格式不规范,读入数据的时候不能顺带读入变量名.于是跳过首行 ...
- KMP字符串匹配模板
题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next. (如果你不知道这是什么意思也不要问,去百度 ...
- 修改Oracle数据库SGA和PGA大小
SGA的大小:一般物理内存20%用作操作系统保留,其他80%用于数据库.SGA普通数据库可以分配40%-60%之间,PGA可以分配20%-40%之间.1.以dba身份登录并查看SGA信息:SQL> ...
- Oulipo (poj3461
Oulipo Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 29759 Accepted: 11986 Descript ...
- 基于MyBatis实现Dao理论
基于MyBatis实现Dao理论 推荐使用xml提供sql 实现接口推荐使用Mapper自动实现DAO接口,让我们更关注sql书写本身
- WINDOWS2008server安全策略设置
一.防止黑客或恶意程序暴力破解我的系统密码 答: 暴力破解Windows密码实质上是通过穷举算法来实现,尤其是密码过于简单的系统,暴力破解的方法还是比较实用的.有一点需要我们注意,这个问题的关键在于W ...
- spring mvc中的@Entity是什么意思?
@Entitypublic Class JavaBean{}标注该类为实体类.
- 圆周运动的css3特效案例
<!doctype html><html lang="zh-cn"><head> <meta charset="UTF-8&qu ...
- java sftp判断目录是否存在
java sftp判断目录是否存在 public boolean isExistDir(String path,ChannelSftp sftp){ boolean isExist=false; tr ...