一、视频链接

 1)正交矩阵

  定义:如果一个矩阵,其转置与自身的乘积等于单位向量,那么该矩阵就是正交矩阵,该矩阵一般用Q来表示,即$Q^TQ=QQ^T=I$,也就是$Q^T=Q^{-1}$,即转置=逆

  注意:正交矩阵一定是方阵,我们来举例一个正交矩阵

$Q=\left|\begin{array}{cc}{\cos \theta} & {-\sin \theta} \\ {\sin \theta} & {\cos \theta}\end{array}\right|$

$Q^{T}=\left|\begin{array}{cc}{\cos \theta} & {\sin \theta} \\ {-\sin \theta} & {\cos \theta}\end{array}\right|$

  性质:有了上面正交矩阵的定义,微秒可以得到几个正交矩阵的性质

   a)正交矩阵的行列式$|Q|=1$或者$|Q|=-1$,即行列式等于1或者-1,这个好推导,根据上面的定义,可知正交矩阵的行列式的平方与单位矩阵的行列式(为1)的平方相等

   b)$Q^T=Q^{-1}$,并且也正交

   c)如果矩阵$P$正交,那么矩阵$PQ$也正交

 2)预备知识

  a)正交向量:两个向量正交意味着两个向量的夹角是90°

 

  

17-正交矩阵和Gram-Schmidt正交化的更多相关文章

  1. MIT线性代数:17.正交矩阵和Cram-Schmidt正交化

  2. 施密特正交化 GramSchmidt

    施密特正交化 GramSchmidt 施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特 ...

  3. 浅谈压缩感知(十九):MP、OMP与施密特正交化

    关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...

  4. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  5. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  6. 矩阵分解---QR正交分解,LU分解

    相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...

  7. QR分解迭代求特征值——原生python实现(不使用numpy)

    QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...

  8. 【线性代数】标准正交矩阵与Gram-Schmidt正交化

    1.标准正交矩阵 假设矩阵Q有列向量q1,q2,...,qn表示,且其列向量满足下式: 则 若Q为方阵,由上面的式子则有 我们举例说明上述概念: 2.标准正交矩阵的好处     上面我们介绍了标准正交 ...

  9. 线性代数之——正交矩阵和 Gram-Schmidt 正交化

    这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向 ...

  10. Golang, 以17个简短代码片段,切底弄懂 channel 基础

    (原创出处为本博客:http://www.cnblogs.com/linguanh/) 前序: 因为打算自己搞个基于Golang的IM服务器,所以复习了下之前一直没怎么使用的协程.管道等高并发编程知识 ...

随机推荐

  1. koa2 进阶网站

    http://www.ruanyifeng.com/blog/2017/08/koa.html  阮一峰 https://www.itying.com/koa/ koa2中文网 https://blo ...

  2. 为什么有线宽带提供商获得ASN非常重要?

    光纤和同轴电缆的组合(数据有线电视服务接口规范),由此产生的网络在世界引入了高速互联网接入.我们能够从网络运营中心向家庭用户提供10Mbps的下载速度. 拥有自己的自治系统编号(ASN)和IP块意味着 ...

  3. CF671D Roads in Yusland

    一道很玄妙的题= = 我们考虑先考虑DP 那么有$f[x]=min(c+\sum f[y])$ $f[x]$表示覆盖x的子树和x->fa[x]的所有边最小代价 我们枚举一条边c覆盖的x-> ...

  4. Nginx-常用命令和配置文件

    Nginx常用命令 1.启动命令 在/usr/local/nginx/sbin 目录下执行 ./nginx 2.关闭命令 在/usr/local/nginx/sbin 目录下执行 ./nginx s ...

  5. ckeditor如何能实现直接粘贴把图片上传到服务器中?

    在之前在工作中遇到在富文本编辑器中粘贴图片不能展示的问题,于是各种网上扒拉,终于找到解决方案,在这里感谢一下知乎中众大神以及TheViper. 通过知乎提供的思路找到粘贴的原理,通过TheViper找 ...

  6. 【CF1257E】The Contest【线段树】

    题意:给定三个序列abc,问最少操作几次使得满足a<b<c 题解:将三个序列合并起来,设cnt[i][1/2/3]表示前i个数有几个是来自序列1/2/3的. 枚举第一个序列要到i,此时对于 ...

  7. 20180708-Java修饰符

    public class className{ //...} private boolean myFlag;static final double weeks = 9.5;protected stat ...

  8. JavaScript原型和闭包学习笔记

    在这里先和大家推荐一个博客,这博客的<深入理解javascript原型和闭包(完结)>系列,看了比较多的视频和书本,这个博客讲得很耐人寻味. 深入理解javascript原型和闭包(完结) ...

  9. app中使用

    KeepLive.startWork(this, KeepLive.RunMode.ROGUE, ForegroundNotification("Title", "mes ...

  10. svn 中的add 和commit命令有何区别

    add 功能:向文件拷贝所在的文件夹中添加新的文件,并作出标识,是新添加的,下一步提交时将一并提交到Subversion版本库中去.简单的说就是将一新文件加入svn,你添加再提交后该文件就进入subv ...