传送门

解题思路

  不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直接从\(f_{i-w-1}\)那一层转移来,转移时枚举一下当前买卖多少。考虑优化,发现每次其实就是一个区间取\(max\),是由\(AS\)和\(BS\)所限制的区间,所以单调队列优化就好了,一个正着做一个倒着做,时间复杂度\(O(n^2)\)

代码

#include<bits/stdc++.h>

using namespace std;
const int N=2005; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,Maxp,w,f[N][N],AP[N],BP[N],AS[N],BS[N];
int Q[N],head,tail; int main(){
memset(f,-0x3f,sizeof(f));
n=rd(),Maxp=rd(),w=rd(); f[0][0]=0;
for(int i=1;i<=n;i++)
AP[i]=rd(),BP[i]=rd(),AS[i]=rd(),BS[i]=rd();
for(int i=1;i<=n;i++){
head=1; tail=0; f[i][0]=f[i-1][0];
int Max=max(0,i-w-1);
for(int j=1;j<=Maxp;j++){
f[i][j]=f[i-1][j];
if(j-Q[head]>AS[i]) head++;
while(head<=tail && f[Max][j-1]-AP[i]>f[Max][Q[tail]]-AP[i]*(j-Q[tail])) tail--;
Q[++tail]=j-1; f[i][j]=max(f[i][j],f[Max][Q[head]]-AP[i]*(j-Q[head]));
// for(int k=1;k<=AS[i];k++){
// if(k>j) break;
// f[i][j]=max(f[i][j],f[max(0,i-w-1)][j-k]-AP[i]*k);
// }
// for(int k=1;k<=BS[i];k++){
// if(j+k>Maxp) break;
// f[i][j]=max(f[i][j],f[max(0,i-w-1)][j+k]+BP[i]*k);
// }
}
head=1; tail=0;
for(int j=Maxp-1;j>=0;j--){
if(Q[head]-j>BS[i]) head++;
while(head<=tail && f[Max][j+1]+BP[i]>f[Max][Q[tail]]+BP[i]*(Q[tail]-j)) tail--;
Q[++tail]=j+1; f[i][j]=max(f[i][j],f[Max][Q[head]]+BP[i]*(Q[head]-j));
}
}
/*
for(int i=1;i<=n;i++)
for(int j=0;j<=Maxp;j++)
printf("f[%d][%d]=%d\n",i,j,f[i][j]);
*/
printf("%d\n",f[n][0]);
return 0;
}

LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)的更多相关文章

  1. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  4. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  5. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  6. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  7. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

  8. 股票交易——单调队列优化DP

    题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...

  9. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

随机推荐

  1. 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题1---cvNamedWindow调用报错的问题

    问题描述: 这个实际上是最后一部的问题,将生成的共享库文件放入到了/usr/local/opencv-arm/lib下,并且设置了LD_LIBRARY_PATH中为/usr/local/opencv- ...

  2. CentOS7.查看进程占用端口情况

    1.命令:"netstat -lntp" 2.没有改命令的话,需要安装 net-tools工具:"yum install net-tools" 3. 4. 5.

  3. MySQL数据库生成数据库说明文档

    在半年多前为一个MySQL数据库生成过数据库说明文档,今天要重新生成一份,但是发现完全不记得当时是怎么生成的,只能在网上搜索重来一遍,所以今天特意把这个过程记录一下. 一.安装 使用MySQL数据库表 ...

  4. java基础笔记(11)

    css 样式的设置主要有选择器+声明{}:声明里又分为属性和值: 注释代码:/*注释语句*/ 内联式:写在元素开始的标签里:例:<p style = "color:red;font-s ...

  5. Luogu p1241 括号序列

    括号序列题目连接 这是一道与dp毫无半点关系的题 本来是去找的题来着,结果并没有找到,然后看到了这道题. (本来以为会是很好写的一道题结果因为题意不清直接原地去世了) 思路很简单,基本没有技术含量. ...

  6. 【LGR-063】洛谷11月月赛 I & MtOI2019 Ex Div.2 (A-C)

    [MtOI2019]黑蚊子多 : 按题意模拟 #include<iostream> #include<cstdio> #include<cstring> using ...

  7. hdu1263 简单模拟

    题意:依据水果销量表.依照特定格式输出 格式:首先按产地排序,然后同一产地按水果名排序 注意:第一,设计多级排序           第二.同一产地同一水果可能多次出现,所以须要在前面已经输入的水果里 ...

  8. switch语句能否作用在byte,long,string上

    switch是java中的多分支结构.在switch(expr)中,expr只能是一个整数表达式,或者是枚举常量,整数表达式可以是int基本类型也可以是Integer包装类型,由于byte,short ...

  9. HTML弹性布局

    1.弹性布局的使用 (1)  display:flex:给父容器添加这个属性: (2)  display:flex; 容器添加弹性布局后,显示为块级元素: display:inline-flex; 容 ...

  10. 牛客假日团队赛2 C 修围栏 ( 哈夫曼树,贪心)

    链接:https://ac.nowcoder.com/acm/contest/924/C 来源:牛客网 修围栏 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...