LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)
解题思路
不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直接从\(f_{i-w-1}\)那一层转移来,转移时枚举一下当前买卖多少。考虑优化,发现每次其实就是一个区间取\(max\),是由\(AS\)和\(BS\)所限制的区间,所以单调队列优化就好了,一个正着做一个倒着做,时间复杂度\(O(n^2)\)
代码
#include<bits/stdc++.h>
using namespace std;
const int N=2005;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,Maxp,w,f[N][N],AP[N],BP[N],AS[N],BS[N];
int Q[N],head,tail;
int main(){
memset(f,-0x3f,sizeof(f));
n=rd(),Maxp=rd(),w=rd(); f[0][0]=0;
for(int i=1;i<=n;i++)
AP[i]=rd(),BP[i]=rd(),AS[i]=rd(),BS[i]=rd();
for(int i=1;i<=n;i++){
head=1; tail=0; f[i][0]=f[i-1][0];
int Max=max(0,i-w-1);
for(int j=1;j<=Maxp;j++){
f[i][j]=f[i-1][j];
if(j-Q[head]>AS[i]) head++;
while(head<=tail && f[Max][j-1]-AP[i]>f[Max][Q[tail]]-AP[i]*(j-Q[tail])) tail--;
Q[++tail]=j-1; f[i][j]=max(f[i][j],f[Max][Q[head]]-AP[i]*(j-Q[head]));
// for(int k=1;k<=AS[i];k++){
// if(k>j) break;
// f[i][j]=max(f[i][j],f[max(0,i-w-1)][j-k]-AP[i]*k);
// }
// for(int k=1;k<=BS[i];k++){
// if(j+k>Maxp) break;
// f[i][j]=max(f[i][j],f[max(0,i-w-1)][j+k]+BP[i]*k);
// }
}
head=1; tail=0;
for(int j=Maxp-1;j>=0;j--){
if(Q[head]-j>BS[i]) head++;
while(head<=tail && f[Max][j+1]+BP[i]>f[Max][Q[tail]]+BP[i]*(Q[tail]-j)) tail--;
Q[++tail]=j+1; f[i][j]=max(f[i][j],f[Max][Q[head]]+BP[i]*(Q[head]-j));
}
}
/*
for(int i=1;i<=n;i++)
for(int j=0;j<=Maxp;j++)
printf("f[%d][%d]=%d\n",i,j,f[i][j]);
*/
printf("%d\n",f[n][0]);
return 0;
}
LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)的更多相关文章
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- SCOI 股票交易 单调队列优化dp
这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ1855 股票交易 单调队列优化 DP
描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as, 某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...
- 股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
随机推荐
- Java程序的运行过程,以及Java为什么能够跨平台
Java程序运行机制 Java的运行主要分两步:先编译再解释执行 (1)先通过“编译器”将Java源程序(.java)编译成Java字节码文件(.class) (2)通过不同的虚拟机(JVM)将字节 ...
- [Web 前端] 034 计算属性,侦听属性
目录 0. 方便起见,定个轮廓 1. 过滤器 2. 计算属性 2.1 2.2 3. 监听属性 0. 方便起见,定个轮廓 不妨记下方的程序为 code1 <!DOCTYPE html> &l ...
- SQL Server中的扩展事件学习系列
SQL Server 扩展事件(Extented Events)从入门到进阶(1)——从SQL Trace到Extented Events SQL Server 扩展事件(Extented Event ...
- python列表,字典,集合
初识模块 import sys print(sys.path)#查看化境变量 print(sys.argv)#查看文件的相对路径,但是在pachrm中 会自动转为绝对路径 import os #os. ...
- 【学习总结】快速上手Linux玩转典型应用-第5章-远程连接SSH专题
课程目录链接 快速上手Linux玩转典型应用-目录 目录 1. 认识SSH 2. 服务器安装SSH服务 3. 客户端安装SSH工具 4. 客户端链接SSH服务 5. SSH config 6. SSH ...
- 解决nodejs环境下端口号被占用的方法
假设被占用的端口号是8081 1.进入cmd命令窗口 输入netstat -ano|findstr "8081" cmd窗口给我的信息尾部有一个和端口8081对应的PID值 '51 ...
- [七月挑选]windows上面的发音
title: windows上面的发音 开始 love.vbs: CreateObject("SAPI.SpVoice").Speak "I love YOU" ...
- CABasicAnimation animationWithKeyPath Types
转自:http://www.cnblogs.com/pengyingh/articles/2379631.html CABasicAnimation animationWithKeyPath 一些规定 ...
- egon消失的一天,空虚寂寞冷,苑模块的时间
一.时间模块time python有三种表达时间的形式:时间戳.格式化字符串输出和元组. 时间戳:从1970年1月1日00:00:00开始按秒计算的偏移量,返回值是一个float型. 格式化字符串输出 ...
- 常用sql---表记录数和占用空间统计
1.每张表的记录数和占用空间 select owner as 用户名, table_name as 表名, num_rows as 记录数, ROUND(t.NUM_ROWS * t.AVG_ROW_ ...