洛谷 P3214 - [HNOI2011]卡农(线性 dp)
又是一道我不会的代码超短的题(
一开始想着用生成函数搞,结果怎么都搞不粗来/ll
首先不妨假设音阶之间存在顺序关系,最终答案除以 \(m!\) 即可。
本题个人认为一个比较亮的地方在于,每个音阶被奏响次数都是偶数这个条件的处理方式。由于是奇偶性,我们可以发现如果我们钦定了其中 \(m-1\) 个片段对应的音阶集合,那么第 \(m\) 个片段中的音阶集合一定已经确定了。我们考虑从这个性质入手。设 \(dp_i\) 表示有多少个包含 \(i\) 个片段且符合要求的音阶集合,那么我们考虑随便钦定前 \(i-1\) 个片段的音阶。方案数 \(P(2^n-1,i-1)\),但是这样会存在某些情况不合法,不难发现不合法的情况只有可能是以下两类:
- 第 \(i\) 个片段的音阶集合为空
- 第 \(i\) 个片段的音阶集合与之前某个片段的音阶集合重复
考虑减去不合法的情况。对于第一种情况显然前 \(i-1\) 个音阶符合要求,方案数 \(f_{i-1}\),对于第二种情况,考虑第 \(i\) 个片段与哪个片段重复,有 \(i-1\) 种可能,再考虑剩余 \(i-2\) 个片段中有多少种方案,根据 \(f\) 的定义可知方案数为 \(f_{i-2}\),再考虑钦定第 \(i\) 个音阶的方案,由于不能为空也不能与前面 \(i-2\) 个片段重复,方案数 \(2^n-i+1\),因此
\]
线性地推即可。
时间复杂度 \(\mathcal O(m)\)。
注意模数
int n,m,dp[MAXN+5],inv[MAXN+5];
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int main(){
scanf("%d%d",&n,&m);int tot=qpow(2,n);
for(int i=(inv[0]=inv[1]=1)+1;i<=max(n,m);i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
dp[0]=1;for(int i=1,cur=1;i<=m;i++) dp[i]=(0ll+cur-dp[i-1]-1ll*dp[i-2]*(tot-i+1+MOD)%MOD*(i-1)%MOD+MOD+MOD)%MOD,cur=1ll*cur*(tot-i)%MOD;
// for(int i=1;i<=m;i++) printf("%d\n",dp[i]);
int res=dp[m];for(int i=1;i<=m;i++) res=1ll*res*inv[i]%MOD;printf("%d\n",res);
return 0;
}
洛谷 P3214 - [HNOI2011]卡农(线性 dp)的更多相关文章
- P3214 [HNOI2011]卡农
题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...
- 【洛谷P1854】花店橱窗 线性dp+路径输出
题目大意:给定 N 个数字,编号分别从 1 - N,M 个位置,N 个数字按照相对大小顺序放在 M 个位置里,每个数放在每个位置上有一个对答案的贡献值,求一种摆放方式使得贡献值最大. 题解:一道典型的 ...
- 【题解】洛谷P1070 道路游戏(线性DP)
次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...
- 洛谷P1140 相似基因(线性DP)
题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了444种核苷酸,简记作A,C,G,TA,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类 ...
- 洛谷 P1280 尼克的任务 (线性DP)
题意概括 线性资源分配的问题,因为空闲的时间大小看后面的时间(反正感觉这个就是个套路)所以从后往前DP. 转移方程 如果当前时刻没有工作 f[i]=f[i+1]+1 如果当前时刻有工作 f[i]=ma ...
- dp 洛谷P1977 出租车拼车 线性dp
题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆人一起,总共需要支付的钱 ...
- 2018.07.09 洛谷P2365 任务安排(线性dp)
P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...
- 洛谷P1156 垃圾陷阱【线性dp】
题目:https://www.luogu.org/problemnew/show/P1156 题意: 每一个垃圾投放时间是t,可以堆的高度是h,如果吃掉可以增加的生命值是f. 给定g个垃圾,初始生命值 ...
- 洛谷P1140 相似基因【线性dp】
题目:https://www.luogu.org/problemnew/show/P1140 题意: 给定两串基因串(只包含ATCG),在其中插入任意个‘-’使得他们匹配.(所以一共是5种字符) 这5 ...
随机推荐
- try-catch-finally面试题
try catch finally 执行顺序面试题总结 执行顺序 今天牛客网遇到这个题目,做对了,但是下面的评论却很值得看看 public class TestTry { public int add ...
- canvas中的优先级,.after最前,before最底,canvas中间,部件在布局下面
<RelativeWidget>: # 画布之后 canvas.before: Color: # 白色 rgba:[1,1,1,1] Rectangle: pos:self.pos # 最 ...
- ScatterLayout:分散布局在py中的引用
""" ScatterLayout:分散布局 """ from kivy.app import App from kivy.uix.scat ...
- OO_JAVA_电梯运行模拟_单元总结
电梯运行模拟--三次作业总结 目录 电梯运行模拟--三次作业总结 总体遵循的设计思路 逻辑解耦 电梯与调度器解耦 楼层信息的存储和变更与电梯.调度器解耦 调度器运行流程解耦 第一次电梯,蠢笨串行先到先 ...
- CSP踩被记
本来想起个清新脱俗的标题,但碍于语文功底不行,于是光明正大嫖了LiBoyi的高端创意,把这篇博客命名为踩被记. Day -6 用假暴力把真正解拍没了,伤心.Rp有点低 Day -4 信息学考,\(py ...
- 在Ubuntu下的C语言编程
以运行在虚拟机下的Ubuntu为例: mkdir fenchen 来创建一个文件夹 cd fenchen 切换到这个文件夹下面 vi test.c 创建并编辑一个test.c文件 按 i 编辑,之后把 ...
- iostat主要性能指标
iostat参数很多,日常运维中主要关注一下字段(根据这些字段的输出内容一般就可以确定服务器是否存在IO性能瓶颈) 1.%iowait:CPU等待输入输出完成时间的百分比.该值较高,表示磁盘存在I/O ...
- 基于 Istio 的全链路灰度方案探索和实践
作者|曾宇星(宇曾) 审核&校对:曾宇星(宇曾) 编辑&排版:雯燕 背景 微服务软件架构下,业务新功能上线前搭建完整的一套测试系统进行验证是相当费人费时的事,随着所拆分出微服务数量的不 ...
- JMeter学习笔记--工具简单介绍
一.JMeter 介绍 Apache JMeter是纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态和动态资源的性能,例如:静态文件,Java ...
- go的常用数据类型-持续优化篇
p.p1 { margin: 0; font: 12px "Helvetica Neue"; color: rgba(69, 69, 69, 1) } p.p2 { margin: ...