A. 神炎皇


很好的一道题,可能第一次在考场上遇到欧拉函数

题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子,

则称为神奇的数对。问这样的数对共有个?

首先式子同时除一个$gcd(a,b)$,那么设$d=gcd(a,b)$,则$a=A/d,b=B/d$,

所以因为$a$,$b$,中已经将因子全部提出,所以$a\times b$与$a+b$是互质的

然后设$k$为$d/(a+b)$,显然$k\times (a+b)\times (a+b)\leq n$

因此$k\leq n/(x\times x)$

同时对于$a+b$我们只需枚举到$\sqrt{n} $即可

那么考虑范围,对于每个枚举的$i=a+b$,那么显然$k$的取值是$n/(i*i)$,

然后对于$i$我们可以求出$\varphi {i}$,

因为$a+b=i$,所以对于每个与$i$互质的数$x$可得$gcd(i,x)==1$,即

$gcd(i-x,x)==1$。

时间复杂度$O(\sqrt{n} )$.

#include<bits/stdc++.h>
#define MAXN 11000000
#define int long long
using namespace std;
int phi[MAXN],vis[MAXN],pri[MAXN];
int n;
int read(){
int x=0;char c=getchar();
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return x;
}
void shai(){
for(int i=2;i<=sqrt(n);++i){
if(!vis[i]){vis[i]=1;pri[++pri[0]]=i;phi[i]=i-1;}
for(int j=1;j<=pri[0],i*pri[j]<=sqrt(n);++j){
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*pri[j];
vis[i*pri[j]]=1;
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
vis[i*pri[j]]=1;
}
}
}
int ans=0;
signed main(){
n=read();
shai();
for(int i=1;i*i<=n;++i){
ans=ans+(n/(i*i))*phi[i];
//printf("i=%lld ans=%lld %lld\n",i,ans,phi[i]);
}
printf("%lld\n",ans);
}

B. 降雷皇


线段树优化DP。也可以CDQ分治。

C. 幻魔皇


很好题递推题。

首先每层的黑色节点数,白色节点数一定是斐波那契数列。

证明的话:首先每层节点数=每层黑色节点数+每层白色节点数=上层节点数+上上层节点数,是斐波那契数列

黑色节点数=上层节点数,白色节点数=上上层节点数,所以都是斐波那契数列。

统计几个数组$fw_{i}$表示以白点为根的子树深度为$i$时的白点个数(深度从零开始)

$fb_{i}$表示以黑点为根的子树深度为$i$时的黑点个数,

然后统计出$sumw_{i}$,$sumb_{i}$即前缀和

然后我们发现对于以某一黑点或白点为根时只要深度一样其最终的形状一定相同

那么我们就可以分类讨论,两个白点组成路径:

$1.$以白点为$lca$时:

$ans_{i}=fw_{i}\times sumw_{n-i-1}$

即我们假设一点为根节点,那么我们考虑有多少子树符合情况,显然是个前缀和

$2.$以黑点为$lca$时

$ans_{i}=\sum_{k}^{i-1} fw_{k-1}\times fb_{i-k-1}\times sumb_{n-1-max(k,i-k)}$

我们以黑点为$lca$那么枚举他的两个子树的白点深度,再统计出他的子树个数。

#include<bits/stdc++.h>
#define MAXN 11000000
#define int long long
using namespace std;
int n;
const int mod=123456789;
int read(){
int x=0;char c=getchar();
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return x;
}
int f_w[MAXN],f_b[MAXN],sum_w[MAXN],sum_b[MAXN];
int ans[MAXN];
signed main(){
n=read();
f_w[0]=1;f_w[1]=0;f_w[2]=1;f_w[3]=1;
for(int i=4;i<=n;++i){
f_w[i]=(f_w[i-1]+f_w[i-2])%mod;
}
f_b[0]=0;f_b[1]=1;
for(int i=2;i<=n;++i){
f_b[i]=(f_b[i-1]+f_b[i-2])%mod;
}
sum_w[0]=f_w[0];sum_b[0]=f_b[0];
for(int i=1;i<=n;++i){
sum_w[i]=(sum_w[i-1]+f_w[i])%mod;
sum_b[i]=(sum_b[i-1]+f_b[i])%mod;
}
for(int i=1;i<=n*2;++i){
ans[i]=(ans[i]+f_w[i]*sum_w[n-i-1])%mod;
//printf("ans[%lld]=%lld\n",i,ans[i]);
}
for(int i=3;i<=n*2;++i){
for(int k=1;k<=i-1;++k){
ans[i]=(ans[i]+f_w[k-1]%mod*f_b[(i-k)-1]%mod*sum_b[n-1-max(k,i-k)]%mod)%mod;
//printf("ans[%lld]=%lld k=%lld\n",i,ans[i],k);
}
}
for(int i=1;i<=2*n;++i){
printf("%lld ",ans[i]);
}
}

「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇的更多相关文章

  1. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  2. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  3. 【bzoj4804】欧拉心算 欧拉函数

    题目描述 给出一个数字N 输入 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10^7 输出 按读入顺序输出答案. 样例输入 1 1 ...

  4. 【poj 2407】Relatives(数论--欧拉函数 模版题)

    题意就是求10^9以内的正整数的欧拉函数(Φ(n)表示<=n的与n互质的正整数个数). 解法:用欧拉筛和欧拉函数的一些性质:    1.若p是质数,Φ(p)=p-1:    2.欧拉函数是积性函 ...

  5. 「POJ3696」The Luckiest number【数论,欧拉函数】

    # 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...

  6. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

  7. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  8. 【欧拉函数】 poj 2478

    递推法求欧拉函数: #include <iostream> #include <cstdio> #include <cstring> using namespace ...

  9. HDU2588:GCD(欧拉函数的应用)

    题目链接:传送门 题目需求:Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.(2& ...

随机推荐

  1. postman Variables变量的详解与应用

    变量 变量类型(按照作用域划分) 全局变量(全局环境里面的变量) 集合变量(请求集合里声明的变量) 自定义环境变量 数据变量(在runner时文件变量) 本地变量 变量权重类型 全局变量 < 集 ...

  2. Asp.NetCore Web开发之跨域问题

    在前后端分离的web开发中,解决跨域问题是不可避免的,为什么会出现跨域问题呢,这主要是因为web中的"同源策略",浏览器出于安全原因,不让用户随便访问不同于当前站点的资源,也就是说 ...

  3. QFNU-ACM 2019.5.23组队赛 2019山东省赛复现

    A.Calandar 题意:一年12个月,一个月30天,5天一周,已知某天的年月日星期数,求所给年月日的星期数是多少 思路:直接进行计算,其实每个月每年都是等长度的就使得计算的时候忽略年月,可以直接进 ...

  4. PlantUML --- 使用代码快速绘制时序图、思维导图

    本篇思维导图 @startmindmap <style> mindmapDiagram { .green { BackgroundColor lightgreen } .rose { Ba ...

  5. Linux查看登录日志 last命令 查看当前登录用户

    Linux查看登录日志 linux 发布于 31 分钟前   lastlog 打印系统账号最近一次的登录记录情况,解析的是/var/log/lastlog文件,它是一个data file类型的文件,文 ...

  6. Netperf测试技巧

    Netperf测试技巧   Netperf测试技巧 1.概况 Netperf是一种网络性能的测量工具,主要针对基于TCP或UDP的传输.Netperf根据应用的不同,可以进行不同模式的网络性能测试,即 ...

  7. Centos7 cache/buff过高处理方法

    Centos7 cache/buff过高处理方法   kevinxliu关注0人评论36799人阅读2018-07-26 10:09:59   当linux运行久点,会产生很多不必要的cache或者b ...

  8. k8s创建资源的两种方式及DaemonSet应用(5)

    一.创建方式分类 Kubernetes 支持两种方式创建资源: (1)用 kubectl 命令直接创建,比如: kubectl run httpd-app --image=reg.yunwei.com ...

  9. 061.Python前端Django组件用户认证组件

    一 auth认证组件 在使用pymysql,数据库迁移的时候.,默认生成有十张表如下 查看author_user表结构 mysql> desc auth_user; +------------- ...

  10. 002.Python数据类型

    一 python语言注释 就是对代码的解释, 方便大家阅读代码用的 1.1 注释的分类 (1)单行注释 # print 在python2.x print "1" # print 在 ...