题目传送门

题目大意

给出一个\(n\)个点的树,和常数\(k\),对于\(\forall i\in[1,n]\),求出:

\[\sum_{j=1}^{n} \text{dist}(i,j)^k
\]

\(n\le 5\times 10^4,k\le 150\)

思路

真的很妙,一开始完全没有思路,看了\(\texttt{y2823774827y}\)的题解之后瞬间懂了。

我们考虑对于\(i\)如何计算答案,我们发现这个指数非常不好看,于是我们可以使用第二类斯特林数展开,就跟组合数问题差不多的,变为:

\[\sum_{j=1}^{n}\sum_{d=0}^{\text{dist}(i,j)}\binom{\text{dist}(i,j)}{d}\begin{Bmatrix}k\\d\end{Bmatrix}d!
\]

交换求和顺序可以得到:

\[=\sum_{d=0}^{\min(n,k)}\begin{Bmatrix}k\\d\end{Bmatrix}d!\sum_{j=1}^{n}\binom{\text{dist}(i,j)}{d}
\]

于是,我们的问题就是如何快速求出后面那个\(\sum\)。我们想到这个东西可以拆成:

\[\binom{\text{dist}(i,j)}{d}=\binom{\text{dist}(i,j)-1}{d}+\binom{\text{dist}(i,j)-1}{d-1}
\]

于是,我们用换根\(dp\)解决这个问题了。具体见代码。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 50005
#define mod 10007
#define MAXM 155 int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod;
return res;
} int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;} struct edge{
int v,nxt;
}e[MAXN << 1]; int top = 1,head[MAXN]; void Add_Edge (int u,int v){
e[++ top] = edge {v,head[u]},head[u] = top;
e[++ top] = edge {u,head[v]},head[v] = top;
} int n,k,S[MAXM][MAXM],fac[MAXM],dp1[MAXN][MAXM],dp2[MAXN][MAXM],tmp[MAXM];
//dp1[u][k]表示的是\sum_{j在i的子树内(包括i)} \binom{dist(i,j)}{k}
//dp2[u][k]表示的是\sum_{j=1}^{n} \binom{dist(i,j)}{k} void dfs1 (int u,int fa){
dp1[u][0] = 1;
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs1 (v,u);
for (Int j = 1;j <= k;++ j) dp1[u][j] = add (dp1[u][j],add (dp1[v][j],dp1[v][j - 1]));
dp1[u][0] = add (dp1[u][0],dp1[v][0]);
}
} void dfs2 (int u,int fa){//换根dp
for (Int i = 0;i <= k;++ i) dp2[u][i] = dp1[u][i];
if (fa){
for (Int i = 1;i <= k;++ i) tmp[i] = dec (dp2[fa][i],add (dp1[u][i],dp1[u][i - 1]));
tmp[0] = dec (dp2[fa][0],dp1[u][0]);
for (Int i = 1;i <= k;++ i) dp2[u][i] = add (dp2[u][i],add (tmp[i],tmp[i - 1]));
dp2[u][0] = add (dp2[u][0],tmp[0]);
}
for (Int i = head[u];i;i = e[i].nxt){
int v = e[i].v;
if (v == fa) continue;
dfs2 (v,u);
}
} template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} signed main(){
read (n,k),S[0][0] = fac[0] = 1;
for (Int i = 1;i <= k;fac[i] = mul (i,fac[i - 1]),++ i)
for (Int j = 1;j <= i;++ j)
S[i][j] = add (S[i - 1][j - 1],mul (j,S[i - 1][j]));
for (Int i = 2,u,v;i <= n;++ i) read (u,v),Add_Edge (u,v);
dfs1 (1,0),dfs2 (1,0);
for (Int i = 1;i <= n;++ i){
int sum = 0;
for (Int j = 0;j <= k;++ j) sum = add (sum,mul (fac[j],mul (S[k][j],dp2[i][j])));
write (sum),putchar ('\n');
}
return 0;
}

题解 Crash 的文明世界的更多相关文章

  1. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  2. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  3. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  4. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  5. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  6. [题解] LuoguP4827 [国家集训队] Crash 的文明世界

    传送门 这个题......我谔谔 首先可以考虑换根\(dp\),但到后来发现二项式定理展开过后需要维护\(k\)个值,同时每个值也要\(O(k)\)的时间按二项式定理算 当然fft优化过后就是k lo ...

  7. 【bzoj 2159】Crash 的文明世界

    Description Crash小朋友最近迷上了一款游戏——文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现在 ...

  8. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  9. 【BZOJ2159】Crash的文明世界 斯特林数+树形dp

    Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...

随机推荐

  1. pixhawk入门

    PX4 是软件名称,代码约30万行 Pixhawk是硬件名称 MissionPlanner是地面站名称 常见术语: WP:Way Point 航电 geofence:地理围栏 Rally Point: ...

  2. cs_play

    # -*-coding:utf-8-*-__author__ = "logan.xu"###构造函数#class Role:# n = 123# # 类变量 比如 n = 123# ...

  3. centos7 ftp 拒绝连接

    2021-09-03 1. 问题描述 刚才在重新搭建 ftp 服务器时,发现 ftp 拒绝连接,想起来我还没启动 vsftpd 服务,尝试启动却无法启动 vsftpd 服务 2. 解决方法 使用命令 ...

  4. 五分钟搞懂MySQL索引下推

    大家好,我是老三,今天分享一个小知识点--索引下推. 如果你在面试中,听到MySQL5.6"."索引优化" 之类的词语,你就要立马get到,这个问的是"索引下推 ...

  5. Spring Boot 入门系列(二十五)读取配置文件的几种方式详解!

    在项目开发中经常会用到配置文件,之前介绍过Spring Boot 资源文件属性配置的方法,但是很多朋友反馈说介绍的不够详细全面.所以, 今天完整的分享Spring Boot读取配置文件的几种方式! S ...

  6. tslib移植arm及使用

    测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 tslib 1.4 下载  https://gitlab. ...

  7. Mysql - You can't specify target table '表名' for update in FROM clause 错误解决办法

    背景 在MySQL中,写SQL语句的时候 ,可能会遇到 You can't specify target table '表名' for update in FROM clause 这样的错误 错误含义 ...

  8. ARP原理和常见分类

    路由器一个重要功能是隔离广播域.就是不转发广播包,而ARP请求就是个广播包===> arp 代理 1. ARP交互流程: (1)目的地址和主机在同一个网段(A-C): A ----------- ...

  9. Weblogic Coherence组件漏洞初探CVE-2020-2555

    Weblogic Coherence组件漏洞初探CVE-2020-2555 2020年1月,互联网上爆出了weblogic反序列化远程命令执行漏洞(CVE-2020-2555),Oracle Fusi ...

  10. 【第六篇】- Maven 仓库之Spring Cloud直播商城 b2b2c电子商务技术总结

    Maven 仓库 在 Maven 的术语中,仓库是一个位置(place). Maven 仓库是项目中依赖的第三方库,这个库所在的位置叫做仓库. 在 Maven 中,任何一个依赖.插件或者项目构建的输出 ...