基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能。

一、 训练、保存模型

工具:PyCharm-2017、Python-39、sklearn2pmml-0.76.1。

1.训练数据house_price.csv

No square_feet price
1 150 6450
2 200 7450
3 250 8450
4 300 9450
5 350 11450
6 400 15450
7 600 18450

2.训练、保存模型

import sklearn2pmml as pmml
from sklearn2pmml import PMMLPipeline
from sklearn import linear_model as lm
import os
import pandas as pd def save_model(data, model_path):
pipeline = PMMLPipeline([("regression", lm.LinearRegression())])
pipeline.fit(data[["square_feet"]], data["price"])
pmml.sklearn2pmml(pipeline, model_path, with_repr=True) if __name__ == "__main__":
data = pd.read_csv("house_price.csv")
model_path = model_path = os.path.dirname(os.path.abspath(__file__)) + "/my_liner_model.pmml"
save_model(data, model_path)
print("模型保存完成。")

二、JavaWeb应用开发

工具:IntelliJ IDEA-2018、jdk-14.0.2、Tomcat-9.0.37。

创建maven项目,加入依赖项

    <dependencies>
<dependency>
<groupId>org.jpmml</groupId>
<artifactId>pmml-evaluator</artifactId>
<version>1.4.15</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
<version>2.2.11</version>
</dependency>
<dependency>
<groupId>javax.xml</groupId>
<artifactId>jaxb-api</artifactId>
<version>2.1</version>
</dependency>
<dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
<version>2.2.11</version>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.0.1</version>
</dependency>
</dependencies>

项目结构为

界面——index.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
<head>
<title>使用pmml跨平台部署机器学习模型Demo</title>
</head>
<body>
<h2>使用pmml跨平台部署机器学习模型Demo——房价预测</h2>
<form name="form" method="post" action="/PredictServlet">
<label>房子英尺数(整数):</label>
<input type="text" name="feet" required>
<button type="submit">预测房价</button>
</form>
<div>
<label>预测价格为:</label>
${price}
</div> </body>
</html>

Servlet类——PredictServlet.java

package servlet;

import service.PredictService;
import service.imp.PredictServiceImp; import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException; @WebServlet("/PredictServlet")
public class PredictServlet extends HttpServlet {
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
PredictService predictService = new PredictServiceImp(); String feet_str = request.getParameter("feet"); //获取前端传来的值
int feet = Integer.parseInt(feet_str); double price = predictService.getPredictedPrice(feet); //预测 //请求转发,返回结果
request.setAttribute("price", price);
request.getRequestDispatcher("/index.jsp").forward(request, response);
} protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
this.doPost(request, response);
}
}

Service接口——PredictService.java

package service;

public interface PredictService {
public double getPredictedPrice(int feet);
}

Service实现类——PredictServiceImp.java

package service.imp;

import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.*;
import service.PredictService; import java.io.FileInputStream;
import java.io.InputStream;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map; public class PredictServiceImp implements PredictService {
public double getPredictedPrice(int feet) {
String model_path = "D:\\my_liner_model.pmml"; //pmml模型文件存放路径
Evaluator model = loadModel(model_path); //加载模型
Object r = predict(model, feet); //预测
double result = Double.parseDouble(String.format("%.2f", r)); //格式化
return result;
} private static Evaluator loadModel(String model_path){
PMML pmml = new PMML(); //定义PMML对象
InputStream inputStream; //定义输入流
try {
inputStream = new FileInputStream(model_path); //输入流接到磁盘上的模型文件
pmml = org.jpmml.model.PMMLUtil.unmarshal(inputStream); //将输入流解析为PMML对象
}catch (Exception e){
e.printStackTrace();
}
ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance(); //实例化一个模型构造工厂
Evaluator evaluator = modelEvaluatorFactory.newModelEvaluator(pmml); //将PMML对象构造为Evaluator模型对象 return evaluator;
} private static Object predict(Evaluator evaluator, int feet){
Map<String, Integer> data = new HashMap<String, Integer>(); //定义测试数据Map,存入各元自变量
data.put("square_feet", feet); //键"square_feet"为自变量的名称,应与训练数据中的自变量名称一致 List<InputField> inputFieldList = evaluator.getInputFields(); //得到模型各元自变量的属性列表
Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
for (InputField inputField : inputFieldList) { //遍历各元自变量的属性列表
FieldName inputFieldName = inputField.getName();
Object rawValue = data.get(inputFieldName.getValue()); //取出该元变量的值
FieldValue inputFieldValue = inputField.prepare(rawValue); //将值加入该元自变量属性中
arguments.put(inputFieldName, inputFieldValue); //变量名和变量值的对加入LinkedHashMap
}
Map<FieldName, ?> result = evaluator.evaluate(arguments); //进行预测
List<TargetField> targetFieldList = evaluator.getTargetFields(); //得到模型各元因变量的属性列表
FieldName targetFieldName = targetFieldList.get(0).getName(); //第一元因变量名称
Object targetFieldValue = result.get(targetFieldName); //由因变量名称得到值 return targetFieldValue;
}
}

三、运行测试

  将python中训练得到的pmml模型文件置于D盘根目录下,将文件中的xmlns=".../PMML-4_4"修改为xmlns=".../PMML-4_3"。

启动运行,浏览器访问http://localhost/,进入页面

输入房子英尺数,点击‘预测房价’按钮,展示出预测价格

打包下载:

https://download.csdn.net/download/Albert201605/45648664

End.

使用pmml跨平台部署机器学习模型Demo——房价预测的更多相关文章

  1. 使用pmml实现跨平台部署机器学习模型

    一.概述   对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的 ...

  2. 用PMML实现python机器学习模型的跨平台上线

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  3. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  4. 使用Flask部署机器学习模型

    Introduction A lot of Machine Learning (ML) projects, amateur and professional, start with an aplomb ...

  5. 用PMML实现机器学习模型的跨平台上线

    在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环 ...

  6. 使用ML.NET + ASP.NET Core + Docker + Azure Container Instances部署.NET机器学习模型

    本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. ...

  7. tensorflow机器学习模型的跨平台上线

    在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法 ...

  8. Kubernetes入门(四)——如何在Kubernetes中部署一个可对外服务的Tensorflow机器学习模型

    机器学习模型常用Docker部署,而如何对Docker部署的模型进行管理呢?工业界的解决方案是使用Kubernetes来管理.编排容器.Kubernetes的理论知识不是本文讨论的重点,这里不再赘述, ...

  9. 基于FastAPI和Docker的机器学习模型部署快速上手

    针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker ...

随机推荐

  1. 自然语言处理标注工具——Brat(安装、测试、使用)

    一.Brat标注工具安装 1.安装条件: (1)运行于Linux系统(window系统下虚拟机内linux系统安装也可以) (2)目前brat最新版本(v1.3p1)仅支持python2版本运行使用( ...

  2. Java实现红黑树(平衡二叉树)

    前言 在实现红黑树之前,我们先来了解一下符号表. 符号表的描述借鉴了Algorithms第四版,详情在:https://algs4.cs.princeton.edu/home/ 符号表有时候被称为字典 ...

  3. vue 动态菜单以及动态路由加载、刷新采的坑

    需求: 从接口动态获取子菜单数据 动态加载 要求只有展开才加载子菜单数据 支持刷新,页面显示正常 思路: 一开始比较乱,思路很多.想了很多 首先路由和菜单共用一个全局route, 数据的传递也是通过s ...

  4. 洛谷2387 NOI2014魔法森林(LCT维护最小生成树)

    本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 ...

  5. T-SQL——关于XML类型

    目录 0. 将结果集转化为XML格式 1. 列值拼接为字符串 2. 字符串转换为列值 3. 一些说明 参考 志铭-2021年10月23日 10:43:21 0. 将结果集转化为XML格式 测试数据 I ...

  6. Coursera Deep Learning笔记 卷积神经网络基础

    参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x10 ...

  7. [Beta]the Agiles Scrum Meeting 4

    会议时间:2020.5.15 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 增加教学计划面板,修复bug tq 实现查看.删除测试点功能 wjx 实现批量创建结对项目功能 ...

  8. 基于websocket实现的一个简单的聊天室

    本文是基于websocket写的一个简单的聊天室的例子,可以实现简单的群聊和私聊.是基于websocket的注解方式编写的.(有一个小的缺陷,如果用户名是中文,会乱码,不知如何处理,如有人知道,请告知 ...

  9. elasticsearch的索引重建

    我们知道es在字段的mapping建立后就不可再次修改mapping的值.在我们实际的情况下有些时候就是需要修改mapping的值,解决方案就是重新构建索引数据. 方式一 : 使用索引别名,创建另外一 ...

  10. 【STM32学习笔记】USART 硬件流控

    流控的概念源于 RS232 这个标准,在 RS232 标准里面包含了串口.流控的定义.大家一定了解,RS232 中的"RS"是Recommend Standard 的缩写,即&qu ...