Hive——join的使用

hive中常用的join有:inner join、left join 、right join 、full join、left semi join、cross join、mulitiple

在hive中建立两张表,用于测试:

hive> select * from rdb_a;
OK
1 lucy
2 jack
3 tony hive> select * from rdb_b;
OK
1 12
2 22
4 32

一、基本join使用

1、内关联([inner] join):只返回关联上的结果

select a.id,a.name,b.age from rdb_a a inner join rdb_b b on a.id=b.id;

Total MapReduce CPU Time Spent: 2 seconds 560 msec
OK
1 lucy 12
2 jack 22
Time taken: 47.419 seconds, Fetched: 2 row(s)

2、左关联(left [outer] join):以左表为主

select a.id,a.name,b.age from rdb_a a left join rdb_b b on a.id=b.id;

Total MapReduce CPU Time Spent: 1 seconds 240 msec
OK
1 lucy 12
2 jack 22
3 tony NULL
Time taken: 33.42 seconds, Fetched: 3 row(s)

3、右关联(right [outer] join):以右表为主

select a.id,a.name,b.age from rdb_a a right join rdb_b b on a.id=b.id;

Total MapReduce CPU Time Spent: 2 seconds 130 msec
OK
1 lucy 12
2 jack 22
NULL NULL 32
Time taken: 32.7 seconds, Fetched: 3 row(s)

4、全关联(full [outer] join):以两个表的记录为基准,返回两个表的记录去重之和,关联不上的字段为NULL。

select a.id,a.name,b.age from rdb_a a full join rdb_b b on a.id=b.id;

Total MapReduce CPU Time Spent: 5 seconds 540 msec
OK
1 lucy 12
2 jack 22
3 tony NULL
NULL NULL 32
Time taken: 42.938 seconds, Fetched: 4 row(s)

5、left semi join:以LEFT SEMI JOIN关键字前面的表为主表,返回主表的KEY也在副表中的记录。

select a.id,a.name from rdb_a a left semi join rdb_b b on a.id=b.id;

Total MapReduce CPU Time Spent: 3 seconds 300 msec
OK
1 lucy
2 jack
Time taken: 31.105 seconds, Fetched: 2 row(s) 其实就相当于:select a.id,a.name from rdb_a a where a.id in(select b.id from rdb_b b );

6、笛卡尔积关联(cross join):返回两个表的笛卡尔积结果,不需要指定关联键

select a.id,a.name,b.age from rdb_a a cross join rdb_b b;

Total MapReduce CPU Time Spent: 1 seconds 260 msec
OK
1 lucy 12
1 lucy 22
1 lucy 32
2 jack 12
2 jack 22
2 jack 32
3 tony 12
3 tony 22
3 tony 32
Time taken: 24.727 seconds, Fetched: 9 row(s)

二、Common Join与Map Join

利用hive进行join连接操作,相较于MR有两种执行方案,一种为common join,另一种为map join ,map join是相对于common join的一种优化,省去shullfe和reduce的过程,大大的降低的作业运行的时间。

Common Join(也称之为shufflejoiin/reducejoin)

过程:

1>首先会启动一个Task,Mapper会去读表HDFS上两张X/Y表中的数据 
2>Mapper处理过数据再经过shuffle处理 
3>最后由reduce输出join结果

缺点 :
1>存在shuffle过程,效率低 
2>每张表都要去磁盘读取,磁盘IO大

Map Join

过程:

1>mapjoin首先会通过本地MapReduce Task将要join的小表转成Hash Table Files,然后加载到分布式缓存中 
2>Mapperh会去缓存中读取小表数据来和Big Table数据进行join 
3>Map直接给出结果

优点: 没有shuffle/Reduce过程,效率提高

缺点 :由于小表都加载到内存当中,读内存的要求提高了

hive中专门有个参数来设置是否自动将commmon join 转化为map join:hive.auto.convert.join。

当hive.auto.convert.join=true hive会为我们自动转换。

Hive——join的使用的更多相关文章

  1. Hive JOIN使用详解

    转自http://shiyanjun.cn/archives/588.html Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL.有了Hive,如果使用过SQL语言,并且不理解 ...

  2. Hive Join

    最近被朋友问到有关于Hive Join的问题,保守回答过后,来补充补充知识: Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 一.Hi ...

  3. Hive JOIN的基本操作 及 内部实现

    1.HIVE基本操作: [一起学Hive]之十一-Hive中Join的类型和用法 注:HIve不支持非等值连接: 什么是等值连接: //Oracle SQL 不等值连接 //通过不等值连接查找7788 ...

  4. Hive Join优化

    在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化: 1. 只支持等值连接 2. 底层会将写的HQL语句转换为MapRed ...

  5. hive join 优化

    common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map ...

  6. hive: join 遇到问题

    在表连接时遇到一个问题: insert overwrite table BF_EVT_CRD_CRT_TRAD2 select BF_EVT_CRD_CRT_TRAD.*, jjkdjk.CUST_N ...

  7. 转载:几种 hive join 类型简介

    作为数据分析中经常进行的join 操作,传统DBMS 数据库已经将各种算法优化到了极致,而对于hadoop 使用的mapreduce 所进行的join 操作,去年开始也是有各种不同的算法论文出现,讨论 ...

  8. hive join的三种优化方式

    原网址:https://blog.csdn.net/liyaohhh/article/details/50697519 hive在实际的应用过程中,大部份分情况都会涉及到不同的表格的连接, 例如在进行 ...

  9. hive join 优化 --小表join大表

    1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去red ...

随机推荐

  1. 视觉SLAM的主要功能模块分析

    视觉SLAM的主要功能模块分析 一.基本概念 SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and L ...

  2. jmeter的参数化实现

    背景: 在实际的测试工作中,我们经常需要对多组不同的输入数据,进行同样的测试操作步骤,以验证我们的软件的功能.这种测试方式在业界称为数据驱动测试,而在实际测试工作中,测试工具中实现不同数据输入的过程称 ...

  3. Android 小知识点笔记

    获取 view 的位置 View.getLocationInWindow(int[] location) 一个控件在其父窗口中的坐标位置 View.getLocationOnScreen(int[] ...

  4. Spring Boot WebFlux-01——WebFlux 快速入门实践

    第01课:WebFlux 快速入门实践 Spring Boot 2.0 spring.io 官网有句醒目的话是: BUILD ANYTHING WITH SPRING BOOT Spring Boot ...

  5. 【模拟8.09】建设城市(city) (容斥)

    放在了考试T1 发现70分的DP很水啊,f[i][j]为当前位置是i分配了j个队的方案 我们用前缀和统计,在将i删去,j倒序枚举,就可以删掉一维(也可以滚动数组滚起来) 1 #include<i ...

  6. 【模拟7.22】visit(卢卡斯定理&&中国剩余定理)

    如此显然的组合数我把它当DP做,我真是.... 因为起点终点已经确定,我们发现如果我们确定了一个方向的步数其他方向也就确定了 组合数做法1: 设向右走了a步,然后向左走了b=a-n步,设向上为c,向下 ...

  7. C++知识点大汇总

    概述 1.1980年 贝尔实验室 Bjanre Stroustrup(比雅尼·斯特劳斯特鲁普)对C改进与扩充 最初称为"带类的C",(c with classes). 1983年正 ...

  8. 写DockerFile的一些技巧

    Docker镜像由只读层组成,每个层都代表一个Dockerfile指令.这些层是堆叠的,每一层都是前一层变化的增量.示例Dockerfile: ​ FROM ubuntu:15.04 COPY . / ...

  9. js笔记15

    DOM2动态创建节点 1.生成节点的方法 document.createElement("div") 2.插入节点的方法 父元素.appendChild(新节点) 在父节点的子节点 ...

  10. excel vba的inputBox函数

    Sub test1()    Dim h    Dim j As Integer    j = 0    Dim n1 As Integer '分行单元格在第几列    Dim m1 As Integ ...