正题

题目链接:https://www.luogu.com.cn/problem/P5369


题目大意

一个数列\(a\)的权值定义为\(max\{\sum_{i=1}^ka_i\}(k\in[1,n])\)

给出\(n\)个数字,求它们所有排列的权值和

\(1\leq n\leq 20\)


解题思路

设\(s_i,f_i,g_i\)分别表示集合\(i\)的权值和,集合\(i\)的所有排列中最大前缀和为\(s_i\)的方案数,集合\(i\)的所有排列中的最大前缀和为负的方案数。那么答案就是

\[\sum_{i=0}^{2^n-1} f_is_ig_{2^n-1-i}
\]

\(s_i\)很好求。\(g_i\)的话我们只转移\(s_i<0\)的就可以了,\(f_i\)的话我们考虑每次在前面插入一个数,那么只要原来的是最大前缀和,那么插入之后也一定是。

时间复杂度\(O(2^nn)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=21,P=998244353;
int n,a[N],lg[1<<N],s[1<<N],f[1<<N],g[1<<N],ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
for(int i=0;i<n;i++)lg[1<<i]=i;
int MS=(1<<n);f[0]=g[0]=1;
for(int i=1;i<MS;i++){
int p=i&-i;
s[i]=(s[i-p]+a[lg[p]])%P;
}
for(int i=0;i<MS;i++){
if(s[i]<0)continue;
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
(f[i|(1<<j)]+=f[i])%=P;
}
}
for(int i=0;i<MS;i++){
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
int z=i|(1<<j);
if(s[z]<0)(g[z]+=g[i])%=P;
}
}
for(int i=0;i<MS;i++)
(ans+=1ll*f[i]*g[MS-1-i]%P*s[i]%P)%=P;
printf("%d\n",(ans+P)%P);
return 0;
}

P5369-[PKUSC2018]最大前缀和【状压dp】的更多相关文章

  1. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  2. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  3. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  4. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  5. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  6. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  7. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  8. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  9. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  10. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

随机推荐

  1. 【C#】GC和析构函数(Finalize 方法)

    析构函数: (来自百度百科)析构函数(destructor) 与构造函数相反,当对象脱离其作用域时(例如对象所在的函数已调用完毕),系统自动执行析构函数.析构函数往往用来做"清理善后&quo ...

  2. Windows系统搭建Redis集群三种模式(零坑、最新版)

    目录 主从复制 修改配置文件 启动各节点 验证 哨兵模式 修改配置文件 启动实例 验证 集群模式 修改配置文件 启动实例 验证 主从复制 新建以下三个目录,用来部署一主二从 redis 的安装在另外一 ...

  3. MySQL-后知知觉的索引

       什么是索引? 索引在MySQL中也叫做"键",是存储引擎用于快速找到记录的一种数据结构.索引对于良好的性能 非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重 ...

  4. Eclipse中安装配置Gradle

    Gradle是以Groovy语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具. gradle对多工程的构建支持很出色,工程依赖是gradle的第一功能. gradle支 ...

  5. 从IT圈“鄙视链”看前端开发有多难?

    如今"鄙视链"体现在生活的方方面面,各行各业都有默认一致的鄙视链.IT圈子因为开发语言多样.工程师岗位种类多.技术框架多,也有自己圈子内的鄙视链.按照开发工程师的岗位形成的鄙视链是 ...

  6. 【SpringMVC】视图

    SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户 SpringMVC视图的种类很多,默认有转发视图和重定向视图 当工程引入jstl的依赖,转发视图会自动 ...

  7. kubeadm方式搭建K8S集群

    一.kubeadm介绍 二.安装要求 三.集群规划 四.环境初始化(在每个服务器节点操作) 1.关闭防火墙 2.关闭selinux 3.关闭swap 4.根据规划设置主机名 5.在Master添加ho ...

  8. Linux下ansible使用

    一.ansible的功能和意义 1.功能 ansible批量功能 ----------------------> 并行 01. 可以实现批量系统操作配置 02. 可以实现批量软件服务部署 03. ...

  9. RabbitMQ-如何保证消息在99.99%的情况下不丢失

    1. 简介 MQ虽然帮我们解决了很多问题,但是也带来了很多问题,其中最麻烦的就是,如何保证消息的可靠性传输. 我们在聊如何保证消息的可靠性传输之前,先考虑下哪些情况下会出现消息丢失的情况. 首先,上图 ...

  10. 快速搭建SSM基本项目

    快速搭建SSM项目基本手脚架 Maven构建项目 一般我们使用Maven来管理我们的项目: 导入相关依赖配置pom.xml: <?xml version="1.0" enco ...