正题

题目链接:https://www.luogu.com.cn/problem/P5369


题目大意

一个数列\(a\)的权值定义为\(max\{\sum_{i=1}^ka_i\}(k\in[1,n])\)

给出\(n\)个数字,求它们所有排列的权值和

\(1\leq n\leq 20\)


解题思路

设\(s_i,f_i,g_i\)分别表示集合\(i\)的权值和,集合\(i\)的所有排列中最大前缀和为\(s_i\)的方案数,集合\(i\)的所有排列中的最大前缀和为负的方案数。那么答案就是

\[\sum_{i=0}^{2^n-1} f_is_ig_{2^n-1-i}
\]

\(s_i\)很好求。\(g_i\)的话我们只转移\(s_i<0\)的就可以了,\(f_i\)的话我们考虑每次在前面插入一个数,那么只要原来的是最大前缀和,那么插入之后也一定是。

时间复杂度\(O(2^nn)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=21,P=998244353;
int n,a[N],lg[1<<N],s[1<<N],f[1<<N],g[1<<N],ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
for(int i=0;i<n;i++)lg[1<<i]=i;
int MS=(1<<n);f[0]=g[0]=1;
for(int i=1;i<MS;i++){
int p=i&-i;
s[i]=(s[i-p]+a[lg[p]])%P;
}
for(int i=0;i<MS;i++){
if(s[i]<0)continue;
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
(f[i|(1<<j)]+=f[i])%=P;
}
}
for(int i=0;i<MS;i++){
for(int j=0;j<n;j++){
if(i&(1<<j))continue;
int z=i|(1<<j);
if(s[z]<0)(g[z]+=g[i])%=P;
}
}
for(int i=0;i<MS;i++)
(ans+=1ll*f[i]*g[MS-1-i]%P*s[i]%P)%=P;
printf("%d\n",(ans+P)%P);
return 0;
}

P5369-[PKUSC2018]最大前缀和【状压dp】的更多相关文章

  1. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  2. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  3. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  4. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  5. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  6. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  7. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  8. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  9. 【洛谷5369】[PKUSC2018] 最大前缀和(状压DP)

    点此看题面 大致题意: 对于一个序列,求全排列下最大前缀和之和. 状压\(DP\) 考虑如果单纯按照题目中对于最大前缀和的定义,则一个序列它的最大前缀和是不唯一的. 为了方便统计,我们姑且规定,如果一 ...

  10. T2988 删除数字【状压Dp+前缀和优化】

    Online Judge:从Topcoder搬过来,具体哪一题不清楚 Label:状压Dp+前缀和优化 题目描述 给定两个数A和N,形成一个长度为N+1的序列,(A,A+1,A+2,...,A+N-1 ...

随机推荐

  1. C++ leetcode接雨水

    双指针算法"接雨水" 链接:https://leetcode-cn.com/problems/trapping-rain-water/ 给定 n 个非负整数表示每个宽度为 1 的柱 ...

  2. java activity工作流

    java activity工作流 参考资料: 1.https://blog.csdn.net/jiangyu1013/article/details/73250902 2.https://blog.c ...

  3. 实例说明C++的virtual function的作用以及内部工作机制初探

    C++为何要引入virtual function? 来看一个基类的实现: 1 class CBase 2 { 3 public: 4 CBase(int id) : m_nId(id), m_pBas ...

  4. 源码解析Spring AOP的加载与生效

    本次博主主要进行Spring AOP这里的解析,因为在工作中使用后,却不知道背后的实现原理并在使用的过程中发现了一些认知缺陷,所以决定写这么一篇文章以供大家参考参考,进入正题. 本次博主使用了@Asp ...

  5. Jenkins(6)- 新建用户

    如果想从头学起Jenkins的话,可以看看这一系列的文章哦 https://www.cnblogs.com/poloyy/category/1645399.html 进入用户管理 点击新建用户 填写新 ...

  6. GIT:创建、查看分支命令(git branch -vv)

    在开发过程中一般会用到Git进行版本管理,创建查看分支并与远程仓库交互是非常常见的操作. branch分支 是指在开发主线中分离出来的,做进一步开发而不影响到原来的主线. Git存储的不是一系列的更改 ...

  7. 在开发中使用GMap.Net 控件的心得一

    首先必须先加载GMap.Net这个控件,先通过"添加引用"来加载相应的.dll文件,如果在工具箱中找不到GMapControl这个控件,也别心急. 点击"工具" ...

  8. 5-21python数据类型

    一.字符串,是不可变数据类型,所有字符串的方法都不会修改字符串的值,使用字符串的方法后都是生成了一个新的字符串.就因为字符串是不可变变量! 字符串的方法 1. strip(),默认去空格,但是当()中 ...

  9. bash-completion linux命令补全

    1.有时候用docker run 或者kubectl 想tab补全的时候用不了 这个时候可以安装一个神奇的包bash-completion yum install bash-completion 2. ...

  10. Android——菜单(Menu)

    菜单的运用在Android中很常见,今天就两节体育课,闲下来也想认真的学一学,正好项目中也会有应用.我是跟着菜鸟教程进行学习的,我相应的粘了一些我自己认为比较重要的,以供方便记录学习. 本章给大家带来 ...