CloudCompare中手动点云分割功能ccGraphicalSegmentationTool,

点击应用按钮后将现有的点云分成segmented和remaining两个点云,

//停用点云分割功能
void MainWindow::deactivateSegmentationMode(bool state)

是通过ccPointCloud的可视选择集来实现的。其中用到了点云的swap需要参考!

//创建新的点云,可视的选择集
ccGenericPointCloud* ccPointCloud::createNewCloudFromVisibilitySelection(bool removeSelectedPoints)
{
if (!isVisibilityTableInstantiated())
{
ccLog::Error(QString("[Cloud %1] Visibility table not instantiated!").arg(getName()));
return 0;
} //we create a new cloud with the "visible" points
ccPointCloud* result = 0;
{
//we create a temporary entity with the visible points only
CCLib::ReferenceCloud* rc = getTheVisiblePoints();
if (!rc)
{
//a warning message has already been issued by getTheVisiblePoints!
//ccLog::Warning("[ccPointCloud::createNewCloudFromVisibilitySelection] An error occurred during points selection!");
return 0;
}
assert(rc->size() != 0); //convert selection to cloud
result = partialClone(rc); //don't need this one anymore
delete rc;
rc = 0;
} if (!result)
{
ccLog::Warning("[ccPointCloud::createNewCloudFromVisibilitySelection] An error occurred during segmentation!");
return 0;
} result->setName(getName()+QString(".segmented"));//切割出来的点云 //shall the visible points be erased from this cloud?
if (removeSelectedPoints && !isLocked())
{
//we drop the octree before modifying this cloud's contents
deleteOctree();
clearLOD(); unsigned count = size(); //we have to take care of scan grids first
{
//we need a map between old and new indexes
std::vector<int> newIndexMap(size(), -1);
{
unsigned newIndex = 0;
for (unsigned i=0; i<count; ++i)
{
if (m_pointsVisibility->getValue(i) != POINT_VISIBLE)
newIndexMap[i] = newIndex++;
}
} //then update the indexes
UpdateGridIndexes(newIndexMap, m_grids); //and reset the invalid (empty) ones
//(DGM: we don't erase them as they may still be useful?)
for (size_t i=0; i<m_grids.size(); ++i)
{
Grid::Shared& scanGrid = m_grids[i];
if (scanGrid->validCount == 0)
{
scanGrid->indexes.clear();
}
}
} //we remove all visible points
unsigned lastPoint = 0;
for (unsigned i=0; i<count; ++i)
{
//i持续增长,而lastPoint遇到==POINT_VISIBLE则跳过,起到迁移的效果
if (m_pointsVisibility->getValue(i) != POINT_VISIBLE)
{
if (i != lastPoint)
swapPoints(lastPoint,i);
++lastPoint;
}
} //TODO: handle associated meshes resize(lastPoint); refreshBB(); //calls notifyGeometryUpdate + releaseVBOs
} return result;
}

  调用的方法getTheVisiblePoints()

CCLib::ReferenceCloud* ccGenericPointCloud::getTheVisiblePoints() const
{
unsigned count = size();
assert(count == m_pointsVisibility->currentSize()); if (!m_pointsVisibility || m_pointsVisibility->currentSize() != count)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No visibility table instantiated!");
return 0;
} //count the number of points to copy
unsigned pointCount = 0;
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
++pointCount;
} if (pointCount == 0)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No point in selection");
return 0;
} //we create an entity with the 'visible' vertices only
CCLib::ReferenceCloud* rc = new CCLib::ReferenceCloud(const_cast<ccGenericPointCloud*>(this));
if (rc->reserve(pointCount))
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
rc->addPointIndex(i); //can't fail (see above)
}
else
{
delete rc;
rc = 0;
ccLog::Error("[ccGenericPointCloud::getTheVisiblePoints] Not enough memory!");
} return rc;
}

  

[CC]手动点云分割的更多相关文章

  1. 基于传统方法点云分割以及PCL中分割模块

      之前在微信公众号中更新了以下几个章节 1,如何学习PCL以及一些基础的知识 2,PCL中IO口以及common模块的介绍 3,PCL中常用的两种数据结构KDtree以及Octree树的介绍    ...

  2. PCL—低层次视觉—点云分割(基于凹凸性)

    1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...

  3. PCL点云分割(1)

    点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...

  4. PCL—点云分割(基于凹凸性) 低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5027269.html 1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割 ...

  5. PCL—低层次视觉—点云分割(基于形态学)

    1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直是地球学,测量学的研究重点.但对于城市,森林,等独特地形来说,航空测量会受到影响.因为土地表面的树,地面上的 ...

  6. PCL—低层次视觉—点云分割(超体聚类)

    1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是“体”.与体素滤波器中的体类似,其本质是一个个的小方块.与之前提到的所有分割手段不同,超体聚类的目的并不是分 ...

  7. PCL—低层次视觉—点云分割(最小割算法)

    1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...

  8. PCL—低层次视觉—点云分割(RanSaC)

    点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region ...

  9. segMatch:基于3D点云分割的回环检测

    该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...

随机推荐

  1. Spring MVC基础入门

    Spring MVC简介 Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于请求驱 ...

  2. 在ASP.NET MVC项目中使用React

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:最近在开发钉钉的微应用,考虑到性能和UI库的支持,遂采用了React来开发前端. 目前 ...

  3. JAVA中List 排序

    第一种方法,就是list中对象实现Comparable接口,代码如下: public class SortEntity implements Comparable<SortEntity>{ ...

  4. iOS 从git拷贝Xcode的snippets

    do following things in terminal 1. check out the project using: git clone gitAddress 2. cd the proje ...

  5. CodeForces 548

    A. Mike and Fax time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. C++: virtual inheritance and Cross Delegation

    Link1: Give an example Note: I think the Storable::Write method should also be pure virtual. http:// ...

  7. NSMutableAttributedString常用代码

    NSTextAttachment *attachment = [[NSTextAttachment alloc] init]; attachment.image = [UIImage imageNam ...

  8. SQL Server 日期字段作为查询标志字段的注意事项

    今天在做一个数据抽取程序时遇到一个问题困扰好久才解决,这不是技术问题,而是常识和细心的问题.写出来让大家引起重视一下. 由于之前的程序长期用Oracle,并且数据标志字段采用的日期类型.在Oracle ...

  9. linux install Theano+Tensorflow+Keras

    安装过程中,网络状态一定要好,如果安装过程中出现time out的提示信息,今天就可以洗洗睡啦,等明天网络状态好的时候再安装. 安装过程出现不知名的错误的时候,执行第一步,update一下 1.#up ...

  10. MySQL函数操作数据库

    1.select语句查询信息(实现模糊查询) <form name="form1" method="post" action=""&g ...