[CC]手动点云分割
CloudCompare中手动点云分割功能ccGraphicalSegmentationTool,
点击应用按钮后将现有的点云分成segmented和remaining两个点云,
//停用点云分割功能
void MainWindow::deactivateSegmentationMode(bool state)
是通过ccPointCloud的可视选择集来实现的。其中用到了点云的swap需要参考!
//创建新的点云,可视的选择集
ccGenericPointCloud* ccPointCloud::createNewCloudFromVisibilitySelection(bool removeSelectedPoints)
{
if (!isVisibilityTableInstantiated())
{
ccLog::Error(QString("[Cloud %1] Visibility table not instantiated!").arg(getName()));
return 0;
} //we create a new cloud with the "visible" points
ccPointCloud* result = 0;
{
//we create a temporary entity with the visible points only
CCLib::ReferenceCloud* rc = getTheVisiblePoints();
if (!rc)
{
//a warning message has already been issued by getTheVisiblePoints!
//ccLog::Warning("[ccPointCloud::createNewCloudFromVisibilitySelection] An error occurred during points selection!");
return 0;
}
assert(rc->size() != 0); //convert selection to cloud
result = partialClone(rc); //don't need this one anymore
delete rc;
rc = 0;
} if (!result)
{
ccLog::Warning("[ccPointCloud::createNewCloudFromVisibilitySelection] An error occurred during segmentation!");
return 0;
} result->setName(getName()+QString(".segmented"));//切割出来的点云 //shall the visible points be erased from this cloud?
if (removeSelectedPoints && !isLocked())
{
//we drop the octree before modifying this cloud's contents
deleteOctree();
clearLOD(); unsigned count = size(); //we have to take care of scan grids first
{
//we need a map between old and new indexes
std::vector<int> newIndexMap(size(), -1);
{
unsigned newIndex = 0;
for (unsigned i=0; i<count; ++i)
{
if (m_pointsVisibility->getValue(i) != POINT_VISIBLE)
newIndexMap[i] = newIndex++;
}
} //then update the indexes
UpdateGridIndexes(newIndexMap, m_grids); //and reset the invalid (empty) ones
//(DGM: we don't erase them as they may still be useful?)
for (size_t i=0; i<m_grids.size(); ++i)
{
Grid::Shared& scanGrid = m_grids[i];
if (scanGrid->validCount == 0)
{
scanGrid->indexes.clear();
}
}
} //we remove all visible points
unsigned lastPoint = 0;
for (unsigned i=0; i<count; ++i)
{
//i持续增长,而lastPoint遇到==POINT_VISIBLE则跳过,起到迁移的效果
if (m_pointsVisibility->getValue(i) != POINT_VISIBLE)
{
if (i != lastPoint)
swapPoints(lastPoint,i);
++lastPoint;
}
} //TODO: handle associated meshes resize(lastPoint); refreshBB(); //calls notifyGeometryUpdate + releaseVBOs
} return result;
}
调用的方法getTheVisiblePoints()
CCLib::ReferenceCloud* ccGenericPointCloud::getTheVisiblePoints() const
{
unsigned count = size();
assert(count == m_pointsVisibility->currentSize()); if (!m_pointsVisibility || m_pointsVisibility->currentSize() != count)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No visibility table instantiated!");
return 0;
} //count the number of points to copy
unsigned pointCount = 0;
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
++pointCount;
} if (pointCount == 0)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No point in selection");
return 0;
} //we create an entity with the 'visible' vertices only
CCLib::ReferenceCloud* rc = new CCLib::ReferenceCloud(const_cast<ccGenericPointCloud*>(this));
if (rc->reserve(pointCount))
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
rc->addPointIndex(i); //can't fail (see above)
}
else
{
delete rc;
rc = 0;
ccLog::Error("[ccGenericPointCloud::getTheVisiblePoints] Not enough memory!");
} return rc;
}
[CC]手动点云分割的更多相关文章
- 基于传统方法点云分割以及PCL中分割模块
之前在微信公众号中更新了以下几个章节 1,如何学习PCL以及一些基础的知识 2,PCL中IO口以及common模块的介绍 3,PCL中常用的两种数据结构KDtree以及Octree树的介绍 ...
- PCL—低层次视觉—点云分割(基于凹凸性)
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...
- PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...
- PCL—点云分割(基于凹凸性) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5027269.html 1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割 ...
- PCL—低层次视觉—点云分割(基于形态学)
1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直是地球学,测量学的研究重点.但对于城市,森林,等独特地形来说,航空测量会受到影响.因为土地表面的树,地面上的 ...
- PCL—低层次视觉—点云分割(超体聚类)
1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是“体”.与体素滤波器中的体类似,其本质是一个个的小方块.与之前提到的所有分割手段不同,超体聚类的目的并不是分 ...
- PCL—低层次视觉—点云分割(最小割算法)
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...
- PCL—低层次视觉—点云分割(RanSaC)
点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势的体现.不过多插一句,自Niloy J Mitra教授的Global contrast based salient region ...
- segMatch:基于3D点云分割的回环检测
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...
随机推荐
- PAT A 1119. Pre- and Post-order Traversals (30)【二叉树遍历】
No.1119 题目:由前序后序二叉树序列,推中序,判断是否唯一后输出一组中序序列 思路:前序从前向后找,后序从后向前找,观察正反样例可知,前后序树不唯一在于单一子树是否为左右子树. 判断特征:通过查 ...
- PAT A 1118. Birds in Forest (25)【并查集】
并查集合并 #include<iostream> using namespace std; const int MAX = 10010; int father[MAX],root[MAX] ...
- CompletionService/ExecutorCompletionService/线程池/concurrent包
线程池 线程池的基本思想:线程频繁的创建.销毁会极大地占用系统资源,为了减少系统在创建销毁线程时的开销,线程池应运而生.线程池包括多个已创建的线程,当有任务要在新线程中执行时,将任务提交给线程池,线程 ...
- 移动APP项目研发流程及版本规划(转)
一个移动APP项目研发规模可大可小,但都离不开以下几个成员:产品经理.ui设计师.前端开发.后端开发.测试等.如何合理安排项目成员工作.确保项目顺利进行呢?一个清晰合理的项目研发流程控制很重要. 项目 ...
- ASP.NET使用Memcached
一.安装Memcached及Memcached配置和状态查询 要想使用Memcached做缓存首先需要安装Memcached服务,安装方法如下: memcached.exe下载 保存至相应路径 打开c ...
- C#连接Access数据库(详解)
做一个用VS2012的C#连接Access数据库的备忘, SQL数据库固然强大,有大微软的强力技术支持,LINQ的方便操作,但是如果写一个小程序对数据库方面没有什么大的要求的话,将来在数据库方面就可以 ...
- 全文检索原理以及es
最近要做个文章搜索,对全文检索原理以及es原理进行了一些调研, 1. es索引文件为多个文本文件描述,索引文件中的内容构成可见 http://elasticsearch.cn/article/86 ...
- TTrayIcon用法
TTrayIcon用法 self.trycn1.Icon:=Application.Icon; Self.trycn1.Hint:=self.Caption; self.trycn1.Visible: ...
- JS里面的两种运动函数
最新学了一个新的运动函数,与最初学习的有所不同,第一个运动是根据运动速度完成运动 ,第二个则是根据运动的时间来完成运动,而且把之前的函数都进行了一些兼容处理,在这里列出了看一下: 第一种animate ...
- Leetcode jump Game II
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...