Define on \(\mathbb{R}^d\) the normalized Gaussian measure
\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|x|^2}{2}}dx\]

Consider first the case \(d= 1\). The Taylor expansion of \(e^{-\frac{1}{2}x^2}\) at the point \(x\), with increment \(t\) is
\[e^{−\frac{1}{2}(x−t)^2}=\sum_{n=0}^{\infty}a_n t^n,\]
where
\[a_n=\frac{(−1)^n}{n!}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
This series is convergent for all real or complex values of \(x\) and \(t\), since we are dealing with an entire function. Multiply both sides by \(e^{\frac{1}{2}x^2}\) to get
\[e^{xt−\frac{t^2}{2}}=\sum_{n=0}^{\infty}\frac{1}{n!}(-1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
It is clear that the coefficient of \(t^n\) here is a polynomial in \(x\). We define the \(n\)th Hermite polynomial \(H_n\) by
\[H_n (x)=(−1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]

Then
\[e^{xt-\frac{t^2}{2}}=\sum_{n=0}^{\infty}H_n(x)t^n.\]
The functione \(e^{xt-\frac{t^2}{2}}\) is called the generating function of \((H_n)_{n=0}^{\infty}\).

Theorem 1.1. The polynomials \((H_n)_{n=0}^{\infty}\) form a complete orthogonal system in  \( L^2 (\gamma)\), and  \( ||H_n||_{L^2 (\gamma)} =\sqrt{n!}.\)

Proof. It is clear that \(H_n(x)\) is a poplynormial with degree \(n\). Let \(m\le n\). Using the definition of \(H_n\) and integrating by parts, we get, with \(D=d/dx\),
\[\begin{array}{rcl}\int H_m(x)H_n(x)d\gamma(x)&=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x) e^{\frac{x^2}{2}}\left(D^n e^{−\frac{x^2}{2}}\right)e^{\frac{-x^2}{2}}dx\\ &=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x)(D_n e^{−\frac{x^2}{2}})dx\\ &=&\sum_{n=0}^{\infty} \frac{(−1)^n}{\sqrt{2\pi}}\int (D^n H_m(x)) e^{−\frac{x^2}{2}}dx,\\ \end{array}\]
and this vanishes if \(m<n\). For \(m=n\) the same calculation yields
\[\frac{1}{\sqrt{2\pi}}\int (D_n H_n(x))e^{−\frac{x^2}{2}}dx=n!,\]
and thus \(||H_n||_{L^2 (\gamma)} =\sqrt{n!}\), as claimed.

It remains to prove the completeness. Since any polynomial can be expressed as linear combinations of Hermite polynomials, it suffices to show that the set of all polynomials is dense in \(L^2 (\gamma)\). Assume that \(f\in L^2(\gamma)\subset L^1(\gamma)\) is orthogonal to all polynomials. If \(f\) can be shown to be zero, completeness is proved. The product \(f(x)e^{−\frac{x^2}{2}}\) is in \(L^1(dx)\), so it has a well-defined Fourier transform. Calculating this Fourier transform, expanding \(e^{i\xi x}\) in a Taylor series and assuming that we can interchange the order of summation and integration, we get that
\[\int e^{i\xi x} f(x)d \gamma(x)=\sum_{n=0}^{\infty} \frac{i^n {\xi}^n}{n!} \int x^n f(x)d \gamma(x)=0,  \forall \xi \in \mathbb{R}.\]
We conclude that \(f=0\).

Finally, we must verify that the order of summation and integration in (1.2) can be switched. We shall majorize \(\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\) by an \(L^1(\gamma)\) function, uniformly in \(N\in \mathbb{N}\). But
\[\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\le\sum_{n=0}^{\infty}\frac{|\xi|^n}{n!}|x|^n |f(x)|=e^{|\xi||x|}|f(x)|,\]
and by the Cauchy-Schwarz inequality
\[\int e^{|\xi||x|}|f(x)|d\gamma(x)\le \left(\int |f(x)|^2d\gamma(x)\right)^{\frac{1}{2}}\left(\int e^{2|\xi||x|}d\gamma(x)\right)^{\frac{1}{2}}<\infty.\]

Remark.  Let \(X, Y\) be two random variables with joint Gaussian distribution such that \(E(X)=E(Y)=0,E(X^2)E(Y^2)=1\), then

\[E\left(e^{sX-\frac{s^2}{2}}e^{tY-\frac{t^2}{2}}\right)=e^{stE(XY)}.\]

Taking the \((n + m)\)th partial derivative \(\frac{\partial^{n+m}}{\partial s^n \partial t^m}\) at \(s = t = 0\) in both sides of the above equality yields the same result as theorem 1.1 claimed.

\(\S1 \) Gaussian Measure and Hermite Polynomials的更多相关文章

  1. 数值分析:Hermite多项式

    http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...

  2. Hermite曲线插值

    原文 Hermite Curve Interpolation Hermite Curve Interpolation Hamburg (Germany), the 30th March 1998. W ...

  3. \(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup

    Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2 ...

  4. [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何

    随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...

  5. C++历史(The History of C++)

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  6. C++历史

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  7. UNDERSTANDING THE GAUSSIAN DISTRIBUTION

    UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...

  8. 1002. A+B for Polynomials (25)

    题目链接:https://www.patest.cn/contests/pat-a-practise/1002 原题如下: This time, you are supposed to find A+ ...

  9. S1的小成果:MyKTV系统

    转眼之间,已经到了2016年,即新的一年了!S1也结束了,收获的也不多 ,想想最后留给大家的就一个KTV项目了. 希望大家看时有所收获           现在我们一起来看KTV前台管理 主界面的运行 ...

随机推荐

  1. 介绍几个 window 下面的terminal

    1. putty 配合 winscp 这个是标配 但是如果开多个ssh连接,管理起来很是不方便. 2. MTputty ,如果要管理多态机器,那么这个工具就是相当给力. 可以连接多个Tab,配置和保存 ...

  2. 微信公众账号开发之N个坑(二)

    上篇说到微信公众账号的几个坑,前面五个,已经说到菜单,宝宝继续往下赘述了.可惜,还不知道宝宝的宝宝到底是不是心疼宝宝呢,完了,我凌乱了... 回到正题,我们就不吐槽其他的了,上一篇说到微信的菜单了,那 ...

  3. Charles

    1. charles使用教程指南+客户端弱网测试:http://blog.csdn.net/anualday/article/details/51423457 2.使用Charles对Https请求进 ...

  4. 新版本MySQL Server 5.7的免安装版本设置

    今天重新配置电脑,安装java开发运行的相关环境,在安装mysql的过程中,遇到了一些问题. 因为在网站上下载的是免安装版本的mysql 5.7 ,所以在安装过程中只需要解压缩zip的压缩包即可. 之 ...

  5. 【Mail】telnet收发邮件过程

    telnet发送邮件 关于电子邮件的基础知识请参照:[Mail]邮件的基础知识和原理 smtp协议是一个简单的邮件传输协议,利用它我们可以将邮件发送给别人,这里将通过telnet这个程序利用smtp协 ...

  6. gitlab安装过程总结

    gitlab总算搭建好了,今天下午完成了第一个工程的导入. 梳理下搭建的过程: 1.下载bitnami的一键安装包,并安装 注意设置权限为777,以免出现某文件写入错误的问题 2.配置邮件服务 分别修 ...

  7. 删除从第i个位置开始,长度为len的子串

    /*字符串采用带头结点的链表存储,设计算法函数void delstring(linkstring s, int i,int len)在字符串s中删除从第i个位置开始,长度为len的子串.*//**** ...

  8. 小JAVA大世界之程序建模跳蚤实验

    package com.chigoe;//房子类class House { private int m;// 保存行数 private int n;// 保存列数 private int[][] a; ...

  9. JSP/Servlet相关

    1 简介 JSP(Java Server Page)和Servlet是JavaEE规范的两个基本成员,是JavaWeb开发的重点. JSP的本质是Servlet,当用户向指定的Servlet发送请求时 ...

  10. flask_分页

    一.提交博客文章 1.定义一个单字段的表单对象(form.py) class PostForm(Form): post = StringField('post', validators=[DataRe ...