\(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure
\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|x|^2}{2}}dx\]
Consider first the case \(d= 1\). The Taylor expansion of \(e^{-\frac{1}{2}x^2}\) at the point \(x\), with increment \(t\) is
\[e^{−\frac{1}{2}(x−t)^2}=\sum_{n=0}^{\infty}a_n t^n,\]
where
\[a_n=\frac{(−1)^n}{n!}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
This series is convergent for all real or complex values of \(x\) and \(t\), since we are dealing with an entire function. Multiply both sides by \(e^{\frac{1}{2}x^2}\) to get
\[e^{xt−\frac{t^2}{2}}=\sum_{n=0}^{\infty}\frac{1}{n!}(-1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
It is clear that the coefficient of \(t^n\) here is a polynomial in \(x\). We define the \(n\)th Hermite polynomial \(H_n\) by
\[H_n (x)=(−1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
Then
\[e^{xt-\frac{t^2}{2}}=\sum_{n=0}^{\infty}H_n(x)t^n.\]
The functione \(e^{xt-\frac{t^2}{2}}\) is called the generating function of \((H_n)_{n=0}^{\infty}\).
Theorem 1.1. The polynomials \((H_n)_{n=0}^{\infty}\) form a complete orthogonal system in \( L^2 (\gamma)\), and \( ||H_n||_{L^2 (\gamma)} =\sqrt{n!}.\)
Proof. It is clear that \(H_n(x)\) is a poplynormial with degree \(n\). Let \(m\le n\). Using the definition of \(H_n\) and integrating by parts, we get, with \(D=d/dx\),
\[\begin{array}{rcl}\int H_m(x)H_n(x)d\gamma(x)&=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x) e^{\frac{x^2}{2}}\left(D^n e^{−\frac{x^2}{2}}\right)e^{\frac{-x^2}{2}}dx\\ &=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x)(D_n e^{−\frac{x^2}{2}})dx\\ &=&\sum_{n=0}^{\infty} \frac{(−1)^n}{\sqrt{2\pi}}\int (D^n H_m(x)) e^{−\frac{x^2}{2}}dx,\\ \end{array}\]
and this vanishes if \(m<n\). For \(m=n\) the same calculation yields
\[\frac{1}{\sqrt{2\pi}}\int (D_n H_n(x))e^{−\frac{x^2}{2}}dx=n!,\]
and thus \(||H_n||_{L^2 (\gamma)} =\sqrt{n!}\), as claimed.
It remains to prove the completeness. Since any polynomial can be expressed as linear combinations of Hermite polynomials, it suffices to show that the set of all polynomials is dense in \(L^2 (\gamma)\). Assume that \(f\in L^2(\gamma)\subset L^1(\gamma)\) is orthogonal to all polynomials. If \(f\) can be shown to be zero, completeness is proved. The product \(f(x)e^{−\frac{x^2}{2}}\) is in \(L^1(dx)\), so it has a well-defined Fourier transform. Calculating this Fourier transform, expanding \(e^{i\xi x}\) in a Taylor series and assuming that we can interchange the order of summation and integration, we get that
\[\int e^{i\xi x} f(x)d \gamma(x)=\sum_{n=0}^{\infty} \frac{i^n {\xi}^n}{n!} \int x^n f(x)d \gamma(x)=0, \forall \xi \in \mathbb{R}.\]
We conclude that \(f=0\).
Finally, we must verify that the order of summation and integration in (1.2) can be switched. We shall majorize \(\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\) by an \(L^1(\gamma)\) function, uniformly in \(N\in \mathbb{N}\). But
\[\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\le\sum_{n=0}^{\infty}\frac{|\xi|^n}{n!}|x|^n |f(x)|=e^{|\xi||x|}|f(x)|,\]
and by the Cauchy-Schwarz inequality
\[\int e^{|\xi||x|}|f(x)|d\gamma(x)\le \left(\int |f(x)|^2d\gamma(x)\right)^{\frac{1}{2}}\left(\int e^{2|\xi||x|}d\gamma(x)\right)^{\frac{1}{2}}<\infty.\]
Remark. Let \(X, Y\) be two random variables with joint Gaussian distribution such that \(E(X)=E(Y)=0,E(X^2)E(Y^2)=1\), then
\[E\left(e^{sX-\frac{s^2}{2}}e^{tY-\frac{t^2}{2}}\right)=e^{stE(XY)}.\]
Taking the \((n + m)\)th partial derivative \(\frac{\partial^{n+m}}{\partial s^n \partial t^m}\) at \(s = t = 0\) in both sides of the above equality yields the same result as theorem 1.1 claimed.
\(\S1 \) Gaussian Measure and Hermite Polynomials的更多相关文章
- 数值分析:Hermite多项式
http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...
- Hermite曲线插值
原文 Hermite Curve Interpolation Hermite Curve Interpolation Hamburg (Germany), the 30th March 1998. W ...
- \(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup
Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2 ...
- [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...
- C++历史(The History of C++)
C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...
- C++历史
C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...
- UNDERSTANDING THE GAUSSIAN DISTRIBUTION
UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...
- 1002. A+B for Polynomials (25)
题目链接:https://www.patest.cn/contests/pat-a-practise/1002 原题如下: This time, you are supposed to find A+ ...
- S1的小成果:MyKTV系统
转眼之间,已经到了2016年,即新的一年了!S1也结束了,收获的也不多 ,想想最后留给大家的就一个KTV项目了. 希望大家看时有所收获 现在我们一起来看KTV前台管理 主界面的运行 ...
随机推荐
- [转] AIX lv 4k偏移量
转自:http://www.aixchina.net/Question/29969 前几天在客户数据库做巡检的时候,在警告日志中发现有如下警告:引用WARNING: You are creating ...
- windows下调用发送邮件程序项*发送邮件
#include <windows.h>int _tmain(int argc, _TCHAR* argv[]){ ShellExecute(NULL, _T("open&quo ...
- java8中CAS的增强
注:ifeve.com的同名文章为本人所发,此文在其基础做了些调整.转载请注明出处! 一.java8中CAS的增强 前些天,我偶然地将之前写的用来测试AtomicInteger和synchronize ...
- android基于GPS实现定位操作
一.定位的三种方式 1.wifi定位,ip地址定位,通过ip地址进行查询实际地址: 2.基站定位,信号塔,基站:手机通讯服务的设备 ,信号的格数决定了手机距离基站远近,精确度:几十米到几公里,精确度来 ...
- Getting Started With Hazelcast 读书笔记(第四章)
第四章 分而治之 在指导了如何进行基本使用之后,又再次进入理论模块. Hazelcast的基本策略就是切片分区,默认是271个片.内置一个 partition table记录那个节点是那个分区,并在h ...
- 在Xcode中使用Git进行源码版本控制
http://www.cocoachina.com/ios/20140524/8536.html 资讯 论坛 代码 工具 招聘 CVP 外快 博客new 登录| 注册 iOS开发 Swift Ap ...
- hashcode深入理解
带着问题去理解: 1. Object类HashCode方法是如何实现的,和String类有什么区别? 2.HashCode和Equals之间的关系? 一.hashCode作用 hashCode方法返回 ...
- 19. UIAlertController 提示框获取文本内容,打印控制台上
1.首先定义一个全局字符串变量,方便接收获取的文本内容 2. -(void)viewDidAppear:(BOOL)animated{ UIAlertController * alert = [UIA ...
- 三种Scriptlet总结
什么是Scriptlet? 在JSP中,Scriptlet称为脚本小程序,所欲嵌套在HTML代码中的Java程序都必须使用Scriptlet标记出来. 第一种:<% %> 在此Script ...
- Linux配置网络YUM源
配置网络yum源 RHEL6.5 [root@xuegod163 ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun ...