\(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure
\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|x|^2}{2}}dx\]
Consider first the case \(d= 1\). The Taylor expansion of \(e^{-\frac{1}{2}x^2}\) at the point \(x\), with increment \(t\) is
\[e^{−\frac{1}{2}(x−t)^2}=\sum_{n=0}^{\infty}a_n t^n,\]
where
\[a_n=\frac{(−1)^n}{n!}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
This series is convergent for all real or complex values of \(x\) and \(t\), since we are dealing with an entire function. Multiply both sides by \(e^{\frac{1}{2}x^2}\) to get
\[e^{xt−\frac{t^2}{2}}=\sum_{n=0}^{\infty}\frac{1}{n!}(-1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
It is clear that the coefficient of \(t^n\) here is a polynomial in \(x\). We define the \(n\)th Hermite polynomial \(H_n\) by
\[H_n (x)=(−1)^n e^{\frac{x^2}{2}}\frac{d^n}{dx}e^{-\frac{x^2}{2}}.\]
Then
\[e^{xt-\frac{t^2}{2}}=\sum_{n=0}^{\infty}H_n(x)t^n.\]
The functione \(e^{xt-\frac{t^2}{2}}\) is called the generating function of \((H_n)_{n=0}^{\infty}\).
Theorem 1.1. The polynomials \((H_n)_{n=0}^{\infty}\) form a complete orthogonal system in \( L^2 (\gamma)\), and \( ||H_n||_{L^2 (\gamma)} =\sqrt{n!}.\)
Proof. It is clear that \(H_n(x)\) is a poplynormial with degree \(n\). Let \(m\le n\). Using the definition of \(H_n\) and integrating by parts, we get, with \(D=d/dx\),
\[\begin{array}{rcl}\int H_m(x)H_n(x)d\gamma(x)&=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x) e^{\frac{x^2}{2}}\left(D^n e^{−\frac{x^2}{2}}\right)e^{\frac{-x^2}{2}}dx\\ &=&\sum_{n=0}^{\infty}\frac{(−1)^n}{\sqrt{2\pi}}\int H_m(x)(D_n e^{−\frac{x^2}{2}})dx\\ &=&\sum_{n=0}^{\infty} \frac{(−1)^n}{\sqrt{2\pi}}\int (D^n H_m(x)) e^{−\frac{x^2}{2}}dx,\\ \end{array}\]
and this vanishes if \(m<n\). For \(m=n\) the same calculation yields
\[\frac{1}{\sqrt{2\pi}}\int (D_n H_n(x))e^{−\frac{x^2}{2}}dx=n!,\]
and thus \(||H_n||_{L^2 (\gamma)} =\sqrt{n!}\), as claimed.
It remains to prove the completeness. Since any polynomial can be expressed as linear combinations of Hermite polynomials, it suffices to show that the set of all polynomials is dense in \(L^2 (\gamma)\). Assume that \(f\in L^2(\gamma)\subset L^1(\gamma)\) is orthogonal to all polynomials. If \(f\) can be shown to be zero, completeness is proved. The product \(f(x)e^{−\frac{x^2}{2}}\) is in \(L^1(dx)\), so it has a well-defined Fourier transform. Calculating this Fourier transform, expanding \(e^{i\xi x}\) in a Taylor series and assuming that we can interchange the order of summation and integration, we get that
\[\int e^{i\xi x} f(x)d \gamma(x)=\sum_{n=0}^{\infty} \frac{i^n {\xi}^n}{n!} \int x^n f(x)d \gamma(x)=0, \forall \xi \in \mathbb{R}.\]
We conclude that \(f=0\).
Finally, we must verify that the order of summation and integration in (1.2) can be switched. We shall majorize \(\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\) by an \(L^1(\gamma)\) function, uniformly in \(N\in \mathbb{N}\). But
\[\sum_{n=0}^N\frac{|\xi|^n}{n!}|x|^n|f(x)|\le\sum_{n=0}^{\infty}\frac{|\xi|^n}{n!}|x|^n |f(x)|=e^{|\xi||x|}|f(x)|,\]
and by the Cauchy-Schwarz inequality
\[\int e^{|\xi||x|}|f(x)|d\gamma(x)\le \left(\int |f(x)|^2d\gamma(x)\right)^{\frac{1}{2}}\left(\int e^{2|\xi||x|}d\gamma(x)\right)^{\frac{1}{2}}<\infty.\]
Remark. Let \(X, Y\) be two random variables with joint Gaussian distribution such that \(E(X)=E(Y)=0,E(X^2)E(Y^2)=1\), then
\[E\left(e^{sX-\frac{s^2}{2}}e^{tY-\frac{t^2}{2}}\right)=e^{stE(XY)}.\]
Taking the \((n + m)\)th partial derivative \(\frac{\partial^{n+m}}{\partial s^n \partial t^m}\) at \(s = t = 0\) in both sides of the above equality yields the same result as theorem 1.1 claimed.
\(\S1 \) Gaussian Measure and Hermite Polynomials的更多相关文章
- 数值分析:Hermite多项式
http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...
- Hermite曲线插值
原文 Hermite Curve Interpolation Hermite Curve Interpolation Hamburg (Germany), the 30th March 1998. W ...
- \(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup
Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2 ...
- [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...
- C++历史(The History of C++)
C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...
- C++历史
C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...
- UNDERSTANDING THE GAUSSIAN DISTRIBUTION
UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...
- 1002. A+B for Polynomials (25)
题目链接:https://www.patest.cn/contests/pat-a-practise/1002 原题如下: This time, you are supposed to find A+ ...
- S1的小成果:MyKTV系统
转眼之间,已经到了2016年,即新的一年了!S1也结束了,收获的也不多 ,想想最后留给大家的就一个KTV项目了. 希望大家看时有所收获 现在我们一起来看KTV前台管理 主界面的运行 ...
随机推荐
- hibernate报错Unknown integral data type for ids : java.lang.String
package com.model; // Generated 2016-10-27 14:02:17 by Hibernate Tools 4.3.1.Final /** * CmDept gene ...
- solr安装笔记与定时器任务
一:solr启动 目前solr最高版本为5.5.0版本,很多solr安装都是说将server文件copy到tomcat中,但是solr版本自带有jetty的启动方式 首先下载solr-5.5.0版本, ...
- git资料图
- Mac下 Octave 中plot 无法绘制
在coursera看机器学习课程的时候用到Octave来做数据处理,但是装了之后用plot画图时就会报错: set terminal aqua enhanced title "Figure ...
- lightoj 1427 - Substring Frequency (II) AC自动机
模板题,找来测代码. 注意有相同单词 //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<c ...
- 准备熟悉Kaggle -菜鸟进阶
原文链接http://www.bubuko.com/infodetail-525389.html 1.Kaggle简介 Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle ...
- PHP使用内置函数生成图片的方法详解
原文地址:http://www.poluoluo.com/jzxy/201605/475301.html 本文实例讲述了PHP使用内置函数生成图片的方法.分享给大家供大家参考,具体如下: 第一步:创建 ...
- appium踩过的坑(2):java.lang.NoSuchFieldError:INSTANCE
- ARC模式下的内存泄露问题
ARC模式下的内存泄露问题 iOS提供的ARC 功能很大程度上简化了编程,让内存管理变得越来越简单,但是ARC并不是说不会发生内存泄露,使用不当照样会发生. 以下列举两种内存泄露情况: 死循环造成的内 ...
- awk 的一些用法
awk,我觉得是Linux里面处理文本最精妙的命令,它是一个行处理的命令,它最初级的用法是:给定一些简单的pattern,然后按照这个pattern 去搜索匹配的行.它的高级用法是用awk来编程,除了 ...