luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)
输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18
注意到一个2333这个数字很小并且还是质数这一良好性质,我们可以根据Lucas定理优化式子
为了方便,令\(p=2333\)
设\(f(n,k)=\sum_{i=0}^k{n\choose i}\)
对于\(i\in[0,p\lfloor\frac kp\rfloor)\),根据lucas定理有\({n\choose i}={n\%p\choose i\%p}{n/p\choose i/p}\)
对于每一对\((i\%p,i/p)\)都能惟一确定一个\(i\),根据乘法原理有
\(f(n\%p,p-1)*f(\lfloor\frac np\rfloor,\lfloor\frac kp\rfloor-1)\)
对于\(i\in[p\lfloor\frac kp\rfloor,k]\)则它们/p的值相同,根据Lucas定理可以化为\({\lfloor\frac np\rfloor\choose\lfloor\frac kp\rfloor}*f(n\%p,k\%p)\)
所以\(f(n,k)=f(n\%p,p-1)*f(\lfloor\frac np\rfloor,\lfloor\frac kp\rfloor-1)+{\lfloor\frac np\rfloor\choose\lfloor\frac kp\rfloor}*f(n\%p,k\%p)\)
先预处理0p-1阶乘及其逆元,0p-1里的组合数可以O(1)
注意到在f的递推式中频繁用到了0~p-1内的f值,所以先O(p^2)处理这些f
那么时间复杂度递推式就是\(T(n,k)=T(\lfloor\frac np\rfloor,\lfloor\frac kp\rfloor)+\log p\),如果nk同阶,复杂度\(O(T\log n\log ^2p)\)好像是
一开始复杂度写错了,最后6个点狂T。。。
代码
#include <cstdio>
using namespace std;
const int p = 2333;
int fac[3000], inv[3000];
int f[3000][3000];
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; x = x * x % p, y >>= 1) if (y & 1) res = res * x % p;
return res;
}
int c(long long n, long long m)
{
if (n < m || m < 0) return 0;
if (n < p && m < p) return fac[n] * inv[m] % p * inv[n - m] % p;
return c(n / p, m / p) * c(n % p, m % p) % p;
}
int work(long long n, long long k)
{
if (n < p && k < p) return f[n][k];
return (c(n / p, k / p) * work(n % p, k % p) + work(n % p, p - 1) * work(n / p, k / p - 1)) % p;
}
int main()
{
fac[0] = 1;
for (int i = 1; i < p; i++)
fac[i] = fac[i - 1] * i % p;
inv[p - 1] = qpow(fac[p - 1], p - 2);
for (int i = p - 1; i >= 1; i--)
inv[i - 1] = inv[i] * i % p;
for (int i = 0; i < p; i++)
{
f[i][0] = c(i, 0);
for (int j = 1; j < p; j++)
f[i][j] = (f[i][j - 1] + c(i, j)) % p;
}
int t; scanf("%d", &t);
while (t --> 0)
{
long long x, y;
scanf("%lld%lld", &x, &y);
printf("%d\n", work(x, y));
}
return 0;
}
WA了好几发,define int long long过了后来发现计算C时候三个数乘一起就炸int了。。。
luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)的更多相关文章
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)
题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 先说说自己的想法: 从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置, ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
- P4345-[SHOI2015]超能粒子炮·改【Lucas定理,类欧】
正题 题目链接:https://www.luogu.com.cn/problem/P4345 题目大意 \(T\)组询问,给出\(n,k\)求 \[\sum_{i=0}^{k}\binom{n}{i} ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
随机推荐
- 环形缓冲区的应用ringbuffer
在嵌入式开发中离不开设备通信,而在通信中稳定性最高的莫过于环形缓冲区算法, 当读取速度大于写入速度时,在环形缓冲区的支持下不会丢掉任何一个字节(硬件问题除外). 在通信程序中,经常使用环形缓冲区作为数 ...
- 【转】linux平台Redis安装部署
Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服务器端计算集合的并,交和补集(diff ...
- pycharm中 unittests in xxxx 运行模式
pycham中 当你运行时 ,使用的 是 Run "unittests in xxxx" 模式时候,if __name__ == '__main__': 后面的代码是不执行的 ...
- Android 4学习(3):概述 - Resources
在应用程序中,处理与代码逻辑无关资源的最佳实践是将其放到程序的外部,典型的资源包括字符串,图片等.Android中的资源文件都在res文件夹中,这些资源包括字符串,颜色,主题,样式,图画,布局,动画, ...
- JVM Class Loading过程
转自:<Java Performance>第三章 VM Class Loading The Hotspot VM supports class loading as defined by ...
- javascript——对象的基础知识
一.javascript作为脚本语言可以完成以下任务: 操纵浏览器对象,如窗口的打开与关闭: 操纵Dom树: 通过XMLHttpRequest对象与服务器端进行异步通信: XML编程,借助于Activ ...
- 监控和安全运维 1.4 nagios安装
1. Nagios 简介是一个开源软件,可以监控网络设备网络流量.Linux/windows主机状态,甚至可以监控打印机它可以运行在Linux上或windows上基于浏览器的web界面方便运维人员查看 ...
- sizeof总结
1.sizeof常用总结 ①与strlen比较 strlen 计算字符串的字符数,以"\0"为结束判断,但不统计结束符. sizeof 计算数据(数组.变量.类型. ...
- sqlserver 查询int类型 in (字符串) 报转换int类型出错的问题
, , '') ) AS c_departNames FROM t_user AS A LEFT JOIN t_role AS B ON A.c_roleId=B.c_roleId 用 CHARIND ...
- B和strong以及i和em的区别(转)
B和strong以及i和em的区别 (2013-12-31 13:58:35) 标签: b strong i em 搜索引擎 分类: 网页制作 一直以来都以为B和strong以及i和em是相同的效果, ...