UVA12558 Egyptian Fractions (HARD version)(埃及分数)
题目大意
给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b
(埃及分数意思是分子为1的分数,详见百度百科)
如果有多组解,则分数数量少的优先
如果分数数量一样则分母最大的要尽量小,如果最大的分母同样大,则第二大的分母尽量小,以此类推
为了加大难度,会给出k个不能作为分母的数
(2<=a,b<=876,k<=5 并且 a,b 互质)
首先想的是数论,但是呢
推不出来...
然后发现a,b好像不大
貌似可以搜索
但是呢
不知道上界...
那就迭代加深搜索呗
然后想想怎么剪枝
如果知道 a/b,要怎么求出最小 k 使 1/k < a/b 呢(注意符号)
易知 a/b 为真分数 ,a,b,k均为整数
所以 a<b
所以必定有整数 x,y 使得 x*a+y=b 且y<a
所以可得 int(b/a)=int( (x*a+y) /a )=int(x*a/a)+int(y/a) = x
因为 int(b/a)<=b/a,int(b/a)=x
所以 x+ > b/a , 所以 int(b/a)+1>b/a,
所以1/(x+) < a/b 又 /int(b/a)=/x >=a/b 所以 x+1就是最小的 k 使得 /k < a/b 所以 k=int(b/a) + 证明完毕
知道了 k 的下界,那还要求 k 的上界
显然每次求的分母肯定要比上一次大(题目要求)
所以如果后面所有的分母都为 k ,加起来还没有当前要求的数大,那就不要再搜下去了,再下去也不会有结果的
然后就可以搜了,至于判断是否可用我用的是set
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<set>
using namespace std;
const int N=1e5+;
set <long long> p;
long long t,A,B,n,mxdep;
long long ans[N],w[N];
bool flag;
inline long long gcd(long long a,long long b)
{
return b ? gcd(b,a%b) : a;
}//gcd是为了约分
inline bool pd()
{
for(int i=mxdep;i;i--)
if(ans[i]!=w[i])
return ans[i]&&ans[i]<w[i];
return ;
}//判断答案是否更优
inline void dfs(long long dep,long long a,long long b,long long mi)
{
if(dep==mxdep)
{
if(b%a||(b<(mi-)*a+)||p.count(b/a)) return;//判断合法性
//如果a/b可化为 1/k 的形式并且 1/k 可以选
w[dep]=b/a;
if(pd()) return;//判断答案是否更优
memcpy(ans,w,sizeof(w)); flag=;//更新
return;
}
mi=max(mi,b/a+);//求出下界
for(long long i=mi;i;i++)
{
if( (mxdep-dep+)*b<=i*a ) return;//上界
if(p.count(i)) continue;//判断合法
w[dep]=i;//记录路径
long long xa=a*i-b,xb=i*b;//通分
long long z=gcd(xa,xb);
dfs(dep+,xa/z,xb/z,i+);//约分,向下一层
}
}
int main()
{
cin>>t;
for(long long i=;i<=t;i++)
{
flag=; mxdep=;
cin>>A>>B>>n;
long long c;
p.clear();//细节
while(n--) scanf("%lld",&c),p.insert(c);//存储不合法的数
while(mxdep++)
{
memset(ans,,sizeof(ans));
dfs(,A,B,B/A+);
if(flag) break;
}//迭代加深
printf("Case %lld: %lld/%lld=1/%lld",i,A,B,ans[]);
for(int i=;i<=mxdep;i++)
printf("+1/%lld",ans[i]);
printf("\n");
}
return ;
}
UVA12558 Egyptian Fractions (HARD version)(埃及分数)的更多相关文章
- UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)
UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...
- uva12558 Egyptian Fractions (HARD version)(迭代深搜)
Egyptian Fractions (HARD version) 题解:迭代深搜模板题,因为最小个数,以此为乐观估价函数来迭代深搜,就可以了. #include<cstdio> #inc ...
- UVA-12558 Egyptian Fractions (HARD version) (IDA* 或 迭代加深搜索)
题目大意:经典的埃及分数问题. 代码如下: # include<iostream> # include<cstdio> # include<cstring> # i ...
- UVa 12558 - Egyptian Fractions (HARD version)
题目大意: 给出一个真分数,把它分解成最少的埃及分数的和.同时给出了k个数,不能作为分母出现,要求解的最小的分数的分母尽量大. 分析: 迭代加深搜索,求埃及分数的基础上,加上禁用限制就可以了.具体可以 ...
- 【习题 7-7 UVA-12558】Egyptian Fractions (HARD version)
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 迭代加深搜索. 枚举最大量maxdep 在dfs里面传剩余的要凑的分子.分母 以及上一次枚举的值是多少. 然后找到最小的k,满足1/ ...
- 【Uva 12558】 Egyptian Fractions (HARD version) (迭代加深搜,IDA*)
IDA* 就是iterative deepening(迭代深搜)+A*(启发式搜索) 启发式搜索就是设计估价函数进行的搜索(可以减很多枝哦~) 这题... 理论上可以回溯,但是解答树非常恐怖,深度没有 ...
- UVA_埃及分数(Hard Version) UVA 12588
Problem EEg[y]ptian Fractions (HARD version)Given a fraction a/b, write it as a sum of different Egy ...
- UVA12558-Efyptian Fractions(HARD version)(迭代加深搜索)
Problem UVA12558-Efyptian Fractions(HARD version) Accept:187 Submit:3183 Time Limit: 3000 mSec Pro ...
- 华为OJ平台——将真分数分解为埃及分数
题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...
随机推荐
- Unknown error: Unable to build: the file dx.jar was not loaded from the SDK folder!
Eclipse 编译没问题,但是运行就出现这个报错:Unknown error: Unable to build: the file dx.jar was not loaded from the SD ...
- WPF TextBox 一些设置技巧
WPF TextBox 一些设置技巧 运行环境:Win10 x64, NetFrameWork 4.8, 作者:乌龙哈里,日期:2019-05-01 参考: 章节: 取消输入法 输入方式设定为Over ...
- cocos2dx中替代goto的用法:do{}while(0)和CC_BREAK_IF
我们时常会调用某个函数来创建一个对象,但由于内存不足或其他异常情况发生时对象可能会创建失败,创建失败我们就要结束当前程序转到错误处理地方去处理错误或释放已生成的对象. int* p1 = new in ...
- wpf仿qq边缘自动停靠,支持多屏
wpf完全模仿qq边缘自动隐藏功能,采用鼠标钩子获取鼠标当前状态,在通过当前鼠标的位置和点击状态来计算是否需要隐藏. 以下是实现的具体方法: 一.鼠标钩子实时获取当前鼠标的位置和点击状态 /// &l ...
- 把数据分配到view
- Servlet处理表单数据
Servlet 表单数据 很多情况下,需要传递一些信息,从浏览器到 Web 服务器,最终到后台程序.浏览器使用两种方法可将这些信息传递到 Web 服务器,分别为 GET 方法和 POST 方法. 使用 ...
- PHP网站在Linux服务器上安全设置方案
本文总结了PHP网站在Linux服务器上一些安全设置(ps:还有一些设置给忘了),在<lnmp一键安装包>大多数参数已经包含,如果有什么更多的设置,大家一起讨论学习 PHP安全配置 1. ...
- Grideview总结
http://www.cnblogs.com/sufei/archive/2010/03/27/1698590.html
- c# dictionary,list排序
Dictionary Key排序 Dictionary<string, string> dct= new Dictionary<string, string>(); Dicti ...
- NSNull空值
1.前言 作为占据空间的一个空值,如用在数组或字典中占据一个没有任何值的空间. 1.1 NULL & nil 的区别: nil 是 OC 的,空对象,地址指向空的对象,指针地址指向的是 NUL ...