【题目链接】 http://codeforces.com/problemset/problem/123/E

【题目大意】

  给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从起点到达终点的期望。

【题解】

  首先对于期望计算有X(x,y)=X(x)*X(y),所以对于每次dfs寻路只要求出其起点到终点的期望步数,乘上起点的概率和终点的概率即可。对于一个固定起点和终点的dfs寻路,我们可以发现如果一个点在必要路径上,那么这条路被走过的期望一定为1,如果不在必要路线上,那么走过的次数为0或者2,期望也为1,那么就是和x相连且在x到达y之前能到达的点连成的连通块大小减一就是x到y的dfs寻路期望长度。

  为更方便地处理问题,首先我们将无根树转化为有根树,我们发现如果起点是终点的子节点,那么连通块的大小均为size[终点],如果不是,则连通块的大小一定为n-size[终点]+1,所以我们可以用树形DP,来统计这些信息,同时在访问每个节点的时候计算。

【代码】

#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int N=300000;
int st[N],en[N],n,x,y,size[N];
double ans=0,sst,sen;
vector<int> v[N];
void dfs(int x,int fx){
size[x]=1;
for(int i=0;i<v[x].size();i++){
if(v[x][i]!=fx){
dfs(v[x][i],x);
size[x]+=size[v[x][i]];
st[x]+=st[v[x][i]];
ans+=1.0*st[v[x][i]]*size[v[x][i]]*en[x];
}
}ans+=(sst-st[x])*(n-size[x])*en[x];
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}for(int i=1;i<=n;i++){
scanf("%d%d",st+i,en+i);
sst+=st[i]; sen+=en[i];
}dfs(1,-1);
printf("%.11f\n",ans/sst/sen);
return 0;
}

  

Codeforces 123E Maze(树形DP+期望)的更多相关文章

  1. [CF697D]Puzzles 树形dp/期望dp

    Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...

  2. Codeforces 804D Expected diameter of a tree(树形DP+期望)

    [题目链接] http://codeforces.com/contest/804/problem/D [题目大意] 给你一个森林,每次询问给出u,v, 从u所在连通块中随机选出一个点与v所在连通块中随 ...

  3. Codeforces Round #474-E(树形dp)

    一.题目链接 http://codeforces.com/contest/960/problem/B 二.题意 给定一棵$N$个节点的树,每个节点的权值$V$.定义树中两点$u_1$和$u_m$的权值 ...

  4. CF839 C 树形DP 期望

    给一颗树,求从根出发路径长度的期望是多少. 树形DP 要想清楚期望的计算 /** @Date : 2017-08-12 23:09:41 * @FileName: C.cpp * @Platform: ...

  5. Choosing Capital for Treeland CodeForces - 219D (树形DP)

    传送门 The country Treeland consists of n cities, some pairs of them are connected with unidirectional  ...

  6. 【JZOJ5233】【GDOI模拟8.5】概率博弈 树形dp+期望

    题面 小A和小B在玩游戏.这个游戏是这样的: 有一棵n个点的以1为根的有根树,叶子有权值.假设有m个叶子,那么树上每个叶子的权值序列就是一个1->m 的排列. 一开始在1号点有一颗棋子.两人轮流 ...

  7. 【xsy1130】tree 树形dp+期望dp

    题目写得不清不楚的... 题目大意:给你一棵$n$个节点的树,你会随机选择其中一个点作为根,随后随机每个点深度遍历其孩子的顺序. 下面给你一个点集$S$,问你遍历完$S$中所有点的期望时间,点集S中的 ...

  8. CodeForces - 123E Maze

    http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...

  9. Codeforces 431C - k-Tree - [树形DP]

    题目链接:https://codeforces.com/problemset/problem/431/C 题意: 定义一个 $k$ 树,即所有节点都有 $k$ 个儿子节点,相应的这 $k$ 条边的权重 ...

随机推荐

  1. Android应用程序架构之res

    res/drawable 专门存放png.jpg等图标文件.在代码中使用getResources().getDrawable(resourceId)获取该目录下的资源. res/layout 专门存放 ...

  2. Firefox中打开DOM Inspector

    一: 二:ctrl+shift+I

  3. c/c++:内存泄露和野指针的概念

    内存泄漏 用动态存储分配函数动态开辟的空间,在使用完毕后未释放,结果导致一直占据该内存单元.直到程序结束.即所谓内存泄漏.    注意:内存泄漏是指堆内存的泄漏. 简单的说就是申请了一块内存空间,使用 ...

  4. MVC3 分页Helper

    利用mvc3实现分页效果.效果图如下: 直接拷代码: 首页添加一个Helper的类(命名空间为System.Web.Mvc;). public static HtmlString ShowPageNa ...

  5. JS---DOM概述

    DOM DOM:文档对象模型document object model DOM三层模型: DOM1:将HTML文档封装成对象 DOM2:将XML文档封装成对象 DOM3:将XML文档封装成对象 DOM ...

  6. 判断进程是64bit还是32bit

    #pragmaregion Includes#include<stdio.h>#include <windows.h>#pragmaendregionBOOL  DoesWin ...

  7. ldap理论属于概念缩略词

    Standalone LDAP Daemon, slapd(standalone lightweight access protocol) ldap 389 default listener port ...

  8. linux环境之监听端口配置

    export JAVA_OPTS="-Dcom.sun.management.jmxremote.port=18950 -Dcom.sun.management.jmxremote.auth ...

  9. #include <map>

    //tuple多元数组,必须是静态数组,类似结构体 //配合array,vector使用 //std::tuple<数组元素类型>数组变量名(数组元素变量名); #include < ...

  10. 【Linux学习】Ubuntu下嵌入式交叉编译环境arm-linux-gcc搭建

    (1)首先选择一个路径用来存放arm-linux-gcc.我选用的是/home/book,并在以下建立一个目录arm-linux-gcc. (2)利用cp EABI-4.3.3_Emdedsky_20 ...