Codeforces 123E Maze(树形DP+期望)
【题目链接】 http://codeforces.com/problemset/problem/123/E
【题目大意】
给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从起点到达终点的期望。
【题解】
首先对于期望计算有X(x,y)=X(x)*X(y),所以对于每次dfs寻路只要求出其起点到终点的期望步数,乘上起点的概率和终点的概率即可。对于一个固定起点和终点的dfs寻路,我们可以发现如果一个点在必要路径上,那么这条路被走过的期望一定为1,如果不在必要路线上,那么走过的次数为0或者2,期望也为1,那么就是和x相连且在x到达y之前能到达的点连成的连通块大小减一就是x到y的dfs寻路期望长度。
为更方便地处理问题,首先我们将无根树转化为有根树,我们发现如果起点是终点的子节点,那么连通块的大小均为size[终点],如果不是,则连通块的大小一定为n-size[终点]+1,所以我们可以用树形DP,来统计这些信息,同时在访问每个节点的时候计算。
【代码】
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int N=300000;
int st[N],en[N],n,x,y,size[N];
double ans=0,sst,sen;
vector<int> v[N];
void dfs(int x,int fx){
size[x]=1;
for(int i=0;i<v[x].size();i++){
if(v[x][i]!=fx){
dfs(v[x][i],x);
size[x]+=size[v[x][i]];
st[x]+=st[v[x][i]];
ans+=1.0*st[v[x][i]]*size[v[x][i]]*en[x];
}
}ans+=(sst-st[x])*(n-size[x])*en[x];
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}for(int i=1;i<=n;i++){
scanf("%d%d",st+i,en+i);
sst+=st[i]; sen+=en[i];
}dfs(1,-1);
printf("%.11f\n",ans/sst/sen);
return 0;
}
Codeforces 123E Maze(树形DP+期望)的更多相关文章
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- Codeforces 804D Expected diameter of a tree(树形DP+期望)
[题目链接] http://codeforces.com/contest/804/problem/D [题目大意] 给你一个森林,每次询问给出u,v, 从u所在连通块中随机选出一个点与v所在连通块中随 ...
- Codeforces Round #474-E(树形dp)
一.题目链接 http://codeforces.com/contest/960/problem/B 二.题意 给定一棵$N$个节点的树,每个节点的权值$V$.定义树中两点$u_1$和$u_m$的权值 ...
- CF839 C 树形DP 期望
给一颗树,求从根出发路径长度的期望是多少. 树形DP 要想清楚期望的计算 /** @Date : 2017-08-12 23:09:41 * @FileName: C.cpp * @Platform: ...
- Choosing Capital for Treeland CodeForces - 219D (树形DP)
传送门 The country Treeland consists of n cities, some pairs of them are connected with unidirectional ...
- 【JZOJ5233】【GDOI模拟8.5】概率博弈 树形dp+期望
题面 小A和小B在玩游戏.这个游戏是这样的: 有一棵n个点的以1为根的有根树,叶子有权值.假设有m个叶子,那么树上每个叶子的权值序列就是一个1->m 的排列. 一开始在1号点有一颗棋子.两人轮流 ...
- 【xsy1130】tree 树形dp+期望dp
题目写得不清不楚的... 题目大意:给你一棵$n$个节点的树,你会随机选择其中一个点作为根,随后随机每个点深度遍历其孩子的顺序. 下面给你一个点集$S$,问你遍历完$S$中所有点的期望时间,点集S中的 ...
- CodeForces - 123E Maze
http://codeforces.com/problemset/problem/123/E 题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.p ...
- Codeforces 431C - k-Tree - [树形DP]
题目链接:https://codeforces.com/problemset/problem/431/C 题意: 定义一个 $k$ 树,即所有节点都有 $k$ 个儿子节点,相应的这 $k$ 条边的权重 ...
随机推荐
- leetcode Search for a Range python
class Solution(object): def searchRange(self, nums, target): """ :type nums: List[int ...
- shell基础认识
Shell 我们在终端下写命令Linux内核是看不懂的必须通过shell解释成内核可执行的代码 这就是shell(其实解释命令这只是它的一个功能模块,shell还可以用来进行程序设计) 有点类似win ...
- Android Every day a new function:two
分享功能: 效果图: 代码(分享TEXT,视频或者图片设置type即可): @Override protected void onCreate(Bundle savedInstanceState) { ...
- Jdbc初体验
Java数据库连接(JDBC)由一组用 Java 编程语言编写的类和接口组成.JDBC 为工具/数据库开发人员提供了一个标准的 API,使他们能够用纯Java API 来编写数据库应用程序.然而各个开 ...
- Codis集群的搭建
Codis集群的搭建与使用 一.简介 Codis是一个分布式的Redis解决方案,对于上层的应用来说,连接Codis Proxy和连接原生的Redis Server没有明显的区别(不支持的命令列表 ...
- Microsoft Project 2010 简体中文专业版 + 永久激活密钥
Microsoft Project 2010 简体中文专业版 + 永久激活密钥 (2014-02-17 11:44:16) 转载▼ 标签: 文化 分类: 学习 Microsoft Project已成为 ...
- 让两个Div并排显示
一.使用display的inline属性 <div style="width:300px; height:auto; float:left; display:inline"& ...
- Nand ECC校验和纠错原理及2.6.27内核ECC代码分析
ECC的全称是Error Checking and Correction,是一种用于Nand的差错检测和修正算法.如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个 ...
- MyBitis(iBitis)系列随笔之五:多表(一对多关联查询)
MyBitis(iBitis)系列随笔之一:MyBitis入门实例 MyBitis(iBitis)系列随笔之二:类型别名(typeAliases)与表-对象映射(ORM) MyBitis(iBitis ...
- oracle字符集查看修改
一.什么是Oracle字符集 Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库 ...