Tensorflow ——神经网络
Training Data Eval:
Num examples: 55000 Num correct: 52015 Precision @ 1: 0.9457
Validation Data Eval:
Num examples: 5000 Num correct: 4740 Precision @ 1: 0.9480
Test Data Eval:
Num examples: 10000 Num correct: 9456 Precision @ 1: 0.9456
import tensorflow as tf
import input_data
import math NUM_CLASSES = 10
IMAGE_SIZE = 28
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 10000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 100, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.') def inference(images, hidden1_units, hidden2_units):
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits def loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss def training(loss, learning_rate):
tf.scalar_summary(loss.op.name, loss)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32)) def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder def fill_feed_dict(data_set, images_pl, labels_pl):
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
true_count = 0
steps_per_epoch = data_set.num_examples // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in range(steps_per_epoch):
feed_dict = fill_feed_dict(data_set,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision)) def run_training():
data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)
print(FLAGS.train_dir, FLAGS.fake_data)
with tf.Graph().as_default():
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size)
logits = inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
loss_minist = loss(logits, labels_placeholder)
train_op = training(loss_minist, FLAGS.learning_rate)
eval_correct = evaluation(logits, labels_placeholder)
summary = tf.merge_all_summaries()
init = tf.initialize_all_variables()
sess = tf.Session()
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
sess.run(init)
for step in range(FLAGS.max_steps):
feed_dict = fill_feed_dict(data_sets.train,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss_minist],
feed_dict=feed_dict) if step % 100 == 0:
print('Step %d: loss = %.2f' % (step, loss_value))
summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.flush()
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.train)
print('Validation Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.validation)
print('Test Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.test)
run_training()
Tensorflow ——神经网络的更多相关文章
- TensorFlow神经网络集成方案
TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neur ...
- 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐
原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...
- Tensorflow 神经网络
Tensorflow让神经网络自动创造音乐 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生 ...
- 学习笔记TF055:TensorFlow神经网络简单实现一元二次函数
TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.Tensor ...
- TensorFlow 神经网络相关函数
TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数( ...
- TensorFlow 神经网络教程
TensorFlow 是一个用于机器学习应用程序的开源库.它是谷歌大脑的第二代系统,在取代了近源的 DistBelief 之后,被谷歌用于研究和生产应用.TensorFlow 提供了很多种语言接口,包 ...
- tensorflow神经网络拟合非线性函数与操作指南
本实验通过建立一个含有两个隐含层的BP神经网络,拟合具有二次函数非线性关系的方程,并通过可视化展现学习到的拟合曲线,同时随机给定输入值,输出预测值,最后给出一些关键的提示. 源代码如下: # -*- ...
- TensorFlow神经网络中的激活函数
激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层 ...
- Tensorflow神经网络进行fiting function
使用Tensorflow中的神经网络来拟合函数(y = x ^ 3 + 0.7) # -*- coding:utf-8 -*-import tensorflow as tf import numpy ...
- 封装TensorFlow神经网络
为了参加今年的软件杯设计大赛,这几个月学习了很多新知识.现在大赛的第二轮作品优化已经提交,开始对这四个月所学知识做一些总结与记录. 用TensorFlow搭建神经网络.TensorFlow将神经网络的 ...
随机推荐
- hadoop中Text类 与 java中String类的区别
hadoop 中 的Text类与java中的String类感觉上用法是相似的,但两者在编码格式和访问方式上还是有些差别的,要说明这个问题,首先得了解几个概念: 字符集: 是一个系统支持的所有抽象字符的 ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- S50非接触式IC卡性能简介(M1)
一.主要指标 分为16个扇区,每个扇区为4块,每块16个字节,以块为存取单位: 每个扇区有独立的一组密码及访问控制: 每张卡有唯一序列号,为32位: 具有防冲突机制,支持多卡操作: 无电源,自带天线, ...
- IOS @2X.png
[UIImage imageNamed:@"xxx.png"] 或者xib里iPhone4会自动找*@2x.png initWithContentOfFile:pathToImag ...
- compare:(字符串的大小比较)
1.字符串的比较是按照ascall码进行比较的 比如A比a的值小, if([string1 compare:string2] == (以下描述)) 如果比较的结果是NSOrderedDescendin ...
- js控制打印 转的
很多时候,我们在做系统的时候要做打印功能,打印在js中其实很简单,不过这个很简单的代码并不能满足我们的特定需求,比如我们需要打印的表单在很多文字的中间,或者文字中包含一些广告或者图片什么的,这就很难用 ...
- vijos 1907 飞扬的小鸟
我心里毫无波动甚至还有点想笑. WTF WTF WTF WTF WTF WTF WTF GTMD调了一天什么鬼啊. 原来更新的范围有讲究啊. #include<iostream> #inc ...
- TableView--通讯录--开篇
一,需求图:
- [转]在Windows中配置Rsync同步
在Windows中配置Rsync同步 Rsync是一款不错的文件免费同步软件,可以镜像保存整个目录树和文件系统,同 时保持原来文件的权限.时间.软硬链接.第一次同步时 rsync 会复制全部内容,下次 ...
- JQuery操作Table元素
使用Jquery操作Table中的tr向上或向下移动,以及全选和反选操作. 点击Table Head中的复选框,全选或反选表格中所有的复选框; 选中复选框,点击Up 按钮, tr上移;点击 Down ...