http://poj.org/problem?id=2377

bessie要为FJ的N个农场联网,给出M条联通的线路,每条线路需要花费C,因为意识到FJ不想付钱,所以bsssie想把工作做的很糟糕,她想要花费越多越好,并且任意两个农场都需要连通,并且不能存在环。后面两个条件保证最后的连通图是一棵树。

输出最小花费,如果没办法连通所有节点输出-1.

最大生成树问题,按边的权值从大道小排序即可,kruskal算法可以处理重边的情况,但是在处理的时候,不能仅仅因为两个节点在同一个连通子图就判断图不合法,只是不需要处理这条边,也就是不要加入并查集即可,重边也是一样。

所以只要判断图是否连通即可,但是也不能因为单单判断每个节点是否被访问过,因为就算全部被访问,还是可能不会连通。

只要判断加入并查集的边的条数是否等于n-1即可。上面都是自己开始做的没想清楚或者导致wa的,所以写下来作为自己的一点想法。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; struct edge
{
int u,v,cost;
edge() {}
edge(int x,int y,int z)
{
u=x;
v=y;
cost=z;
}
bool operator <(const edge& a) const
{
return cost>a.cost;
}
}; edge es[];
int par[];
int n,m;
void init()
{
for(int i=;i<=n;i++) par[i]=i;
} int find(int x)
{
return x==par[x]?x:par[x]=find(par[x]);
} void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x!=y) par[x]=y;
} long long kruskal()
{
sort(es,es+m);
//for(int i=0;i<m;i++) printf("%d %d %d\n",es[i].u,es[i].v,es[i].cost);
long long sum=;
int count=;
for(int i=;i<m;i++)
{
edge e=es[i];
if(find(e.u)!=find(e.v))
{
unite(e.u,e.v);
count++;
sum+=e.cost;
}
}
if(count!=n-) sum=-;
return sum;
}
int main()
{
//freopen("a.txt","r",stdin);
int a,b,c;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
es[i]=edge(a,b,c);
}
printf("%lld\n",kruskal());
}
return ;
}

http://poj.org/problem?id=2395

bessie打算去其他农场,这里总共有N个农场,她开始在1号农场,然后有M条双向连通的路,并且可能还有重边,所有的农场都至少有一条路和1号农场相连。去其他农场需要水所以需要一个水袋,但是不知道需要准备多大的袋子,已知每走一公里就会消耗一单元的水,并且每到一个农场就可以补充水,让你找出任意两个农场中距离最长的路,这样就能知道最少需要准备多大的袋子来装水。

扯了这么多 就是在最小生成树中找出路径最长的那一条边,比上面一题还简单。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; struct edge
{
int u,v,cost;
edge() {}
edge(int x,int y,int z)
{
u=x;
v=y;
cost=z;
}
bool operator <(const edge& a) const
{
return cost<a.cost;
}
}; edge es[];
int par[];
int n,m;
void init()
{
for(int i=;i<=n;i++) par[i]=i;
} int find(int x)
{
return x==par[x]?x:par[x]=find(par[x]);
} void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x!=y) par[x]=y;
} long long kruskal()
{
sort(es,es+m);
//for(int i=0;i<m;i++) printf("%d %d %d\n",es[i].u,es[i].v,es[i].cost);
long long sum=;
for(int i=;i<m;i++)
{
edge e=es[i];
if(find(e.u)!=find(e.v))
{
unite(e.u,e.v);
if(e.cost>sum) sum=e.cost;
}
}
return sum;
}
int main()
{
//freopen("a.txt","r",stdin);
int a,b,c;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
es[i]=edge(a,b,c);
}
printf("%lld\n",kruskal());
}
return ;
}

poj - 2377 Bad Cowtractors&&poj 2395 Out of Hay(最大生成树)的更多相关文章

  1. poj 2377 Bad Cowtractors

    题目连接 http://poj.org/problem?id=2377 Bad Cowtractors Description Bessie has been hired to build a che ...

  2. poj 2377 Bad Cowtractors (最大生成树prim)

    Bad Cowtractors Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) To ...

  3. POJ - 2377 Bad Cowtractors Kru最大生成树

    Bad Cowtractors Bessie has been hired to build a cheap internet network among Farmer John's N (2 < ...

  4. poj 2377 Bad Cowtractors(最大生成树!)

    Description Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N ...

  5. POJ 2377 Bad Cowtractors (Kruskal)

    题意:给出一个图,求出其中的最大生成树= =如果无法产生树,输出-1. 思路:将边权降序再Kruskal,再检查一下是否只有一棵树即可,即根节点只有一个 #include <cstdio> ...

  6. POJ 2377 Bad Cowtractors( 最小生成树转化 )

    链接:传送门 题意:给 n 个点 , m 个关系,求这些关系的最大生成树,如果无法形成树,则输出 -1 思路:输入时将边权转化为负值就可以将此问题转化为最小生成树的问题了 /************* ...

  7. POJ:2377-Bad Cowtractors

    传送门:http://poj.org/problem?id=2377 Bad Cowtractors Time Limit: 1000MS Memory Limit: 65536K Total Sub ...

  8. 瓶颈生成树与最小生成树 POJ 2395 Out of Hay

    百度百科:瓶颈生成树 瓶颈生成树 :无向图G的一颗瓶颈生成树是这样的一颗生成树,它最大的边权值在G的所有生成树中是最小的.瓶颈生成树的值为T中最大权值边的权. 无向图的最小生成树一定是瓶颈生成树,但瓶 ...

  9. POJ 2395 Out of Hay(最小生成树中的最大长度)

    POJ 2395 Out of Hay 本题是要求最小生成树中的最大长度, 无向边,初始化es结构体时要加倍,别忘了init(n)并查集的初始化,同时要单独标记使用过的边数, 判断ans==n-1时, ...

随机推荐

  1. Oracle 用户权限分配说明

    一般来说,Oracle普通用户创建后,不建议分配DBA权限.那么一般分配哪些权限呢? 首先来说,一个Oracle普通用户,我们一般性的要求是:   1.能够在本用户下进行本用户相关的创建表结构,数据维 ...

  2. NYOJ-58 最小步数 AC 分类: NYOJ 2014-01-22 22:01 217人阅读 评论(0) 收藏

    #include<stdio.h> void dfs(int step,int x,int y); int d[4][2] = {{1,0},{-1,0},{0,1},{0,-1}}; i ...

  3. NYOJ-949 哈利波特 AC 分类: NYOJ 2013-12-30 12:57 217人阅读 评论(0) 收藏

    #include<stdio.h> int main(){ long long a,b,c,d,e,f; while(scanf("%lld%lld%lld%lld%lld%ll ...

  4. [转载]为什么我希望用C而不是C++来实现ZeroMQ

    来源: http://blog.jobbole.com/19647/ 开始前我要先做个澄清:这篇文章同Linus Torvalds这种死忠C程序员吐槽C++的观点是不同的.在我的整个职业生涯里我都在使 ...

  5. 正确使用HTML title属性

    如果你想对使用手机,平板电脑和辅助技术的用户隐藏某些内容,而只对键盘用户显示,那么请使用title属性. 细节 HTML的title属性本身有问题.之所以有问题是因为它在一些重要的方面表现的不够好,尽 ...

  6. tar命令--解压缩

    tar命令是linux中的一个解压缩的命令.使用tar命令之前首先要搞清楚两个概念:打包和压缩.打包是指将一大堆文件或目录变成一个总的文件:压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 为什 ...

  7. F.I.S本地环境的搭建教程

    一.准备开发环境: 1.安装JRE 2.安装nodejs 最好是msi文件,比较省事. 3.(如果是PHP项目)安装php. 首先下载php(我的是5.5.15版本,win7 64位系统) zip,然 ...

  8. Content Providers详解

    今天仔细阅读了一遍Content Providers的官方API文档,总结了一下Android中Content Providers的用法. 各种类型的Content Provider对一个结构化的数据 ...

  9. Eclipse里面开发ExtJS程序

    首先在http://extjs.org.cn/download下载ext ,我下载的版本是ext-3.4.1.1-gpl,下载好以后解压. 然后在eclipse里面先建立一个web项目,建立好后再we ...

  10. Add and Search Word - Data structure design

    https://leetcode.com/problems/add-and-search-word-data-structure-design/ Design a data structure tha ...