一次彻底掌握数据中心级的JVM调优实战经验
出现内存溢出的场景通常发生在应用程序中存在内存泄漏、对象生命周期过长、对象频繁创建但未能及时回收等问题。以下是几个真实的业务场景,结合内存溢出问题,并从多个角度提出优化方法,来提高内存使用效率。
场景 1:大量业务数据缓存导致堆内存溢出
场景描述:
一个企业级 Web 应用使用了大量内存缓存来存储业务数据,比如用户信息、订单数据等。由于缓存策略不当,大量无效数据长期存储在堆内存中,导致 OutOfMemoryError(堆内存溢出)。
解决思路:
- 优化缓存策略:
- 使用 LRU(Least Recently Used)算法 来替换当前缓存策略,确保频繁使用的数据留存,长时间未被访问的数据及时清理。
- 使用 SoftReference 来存储缓存对象,系统内存不足时可自动回收软引用对象。
- 对业务重要性较低或更新频繁的数据,减少缓存时间,或者使用 弱引用(
WeakReference
),让垃圾回收器更容易回收缓存中的数据。
- 分布式缓存替代本地缓存:
- 使用分布式缓存(如 Redis 或 Memcached)来减少 JVM 内存压力,将缓存从堆内存中移到外部的缓存服务中,提升系统整体内存管理效率。
- 缓存粒度控制:
- 控制缓存对象的粒度,不要缓存过于庞大的对象。如果有复杂对象,拆分成多个部分进行缓存。
- 按需加载:
- 实现延迟加载(Lazy Loading),只在需要时加载和缓存数据,避免预加载不必要的大量数据。
优化效果:
通过调整缓存策略和引用类型、使用分布式缓存、优化缓存数据的粒度,可以减少 JVM 堆内存的压力,避免内存溢出。同时,通过合理的缓存策略,可以让系统在不增加物理资源的情况下,将内存使用效率提升 5-10 倍。
场景 2:循环生成大批量对象导致堆内存溢出
场景描述:
系统定时任务每隔一段时间处理大量订单数据,每次处理都会循环创建大批量对象。由于这些对象创建过于频繁且没有及时释放,堆内存逐渐耗尽,导致 OutOfMemoryError。
解决思路:
- 对象池化:
- 引入 对象池(Object Pooling),复用对象,避免每次处理数据时都新建大量对象。对象池可以用于重用一些固定逻辑的对象,减少 GC 压力。
- 分批处理:
- 将任务分解为多个小批次处理,避免一次性加载和处理过多数据。比如,每次处理 1000 条订单,而不是一次性加载 10 万条订单。
- 减少临时对象的创建:
- 优化代码中对象的创建,避免创建不必要的临时对象,特别是在循环中创建的对象。比如,使用
StringBuilder
替换String
的频繁拼接操作。
- 优化代码中对象的创建,避免创建不必要的临时对象,特别是在循环中创建的对象。比如,使用
- 垃圾回收调优:
- 调整 GC 策略,增加
Survivor
区的大小,确保短生命周期的对象能够及时从Eden
区回收,避免老年代内存压力过大。 - 增加
MaxTenuringThreshold
,让年轻代的对象有更多机会被回收,而不是过早晋升到老年代。
- 调整 GC 策略,增加
优化效果:
通过对象池复用对象、分批次处理任务、减少临时对象的创建和垃圾回收调优,能够显著减少系统在高并发情况下内存占用,提升任务处理效率 5-10 倍,并降低内存溢出的风险。
场景 3:长时间运行的 Web 服务导致堆内存溢出
场景描述:
某 Web 应用是一个长时间运行的服务,在处理高并发请求时,服务端生成了大量的对象,长时间运行后,内存中的某些对象无法被及时回收,导致堆内存溢出。
解决思路:
- 内存泄漏排查:
- 使用工具如 VisualVM 或 MAT (Memory Analyzer Tool) 分析堆内存,找到可能存在的内存泄漏点。
- 检查是否有长生命周期的对象引用了短生命周期的对象,导致短生命周期对象无法被 GC 回收。
- 优化线程使用:
- 使用线程池(如 ThreadPoolExecutor)优化线程的创建和销毁,避免频繁创建短生命周期的线程。
- 避免在线程中持有大对象引用,确保线程任务结束后,GC 可以及时回收相关对象。
- 使用
WeakHashMap
处理短生命周期的对象:- 对于某些短生命周期的对象,比如请求上下文中的一些数据,可以使用
WeakHashMap
存储,避免对象在整个应用生命周期内一直存在。
- 对于某些短生命周期的对象,比如请求上下文中的一些数据,可以使用
- 定时内存清理:
- 如果系统必须要维持长时间运行,定期触发 Full GC,并结合日志监控,主动清理无用的对象,确保堆内存使用在合理范围内。
- 调优堆内存和 GC 策略:
- 增大年轻代的大小,确保短生命周期的对象可以快速被 GC 回收。
- 使用 CMS 或 G1 收集器来优化 Full GC 时间,减少长时间运行过程中由于 GC 导致的停顿。
优化效果:
通过排查内存泄漏、优化线程管理、弱引用对象管理和 GC 策略调优,可以大幅减少堆内存的占用,同时保持系统的高并发能力,内存使用效率可提升 5-10 倍,并避免内存溢出。
场景 4:大批量数据处理时,老年代溢出
场景描述:
在企业级系统中,数据批处理任务经常会加载大量历史数据到内存中进行处理,由于数据量过大,导致老年代堆内存溢出。
解决思路:
- 分块处理数据:
- 使用 分页查询 或 流式处理 的方式,避免一次性加载过多数据到内存中。比如使用 JDBC 的 ResultSet 配合 游标 分块获取数据。
- 使用外部存储:
- 大量中间计算结果可以暂时存储到外部存储系统(如 Redis、文件系统或数据库)中,而不是全存放在内存里。
- 提升老年代的 GC 效率:
- 使用 G1 GC 来管理老年代的回收,通过区域化内存管理,让老年代中的对象能够更高效地回收。
- 增大老年代内存:
- 如果系统有足够的物理内存,适当增大老年代内存大小,通过参数
-Xmx
和-XX:NewRatio
来调节年轻代与老年代的比例。
- 如果系统有足够的物理内存,适当增大老年代内存大小,通过参数
优化效果:
通过分块处理数据、使用外部存储、提升 GC 回收效率,可以大大减少内存压力,尤其是老年代的溢出问题,提升数据处理任务的执行效率,内存利用率提高 5-10 倍。
来查阅的,多半是要准备面试,总结多年来一线实际调优数据中心级大项目,分享JVM调优的经验,祝你面试顺利。记住,感情要的就是上头的一瞬间,人和人之间,有一些moment就够了。
一次彻底掌握数据中心级的JVM调优实战经验的更多相关文章
- [cnbeta]微软最强数据中心级操作系统
微软近日发表了一篇介绍Windows系统内核的博文,期间为了展示Windows的强大扩展性,放出了一张非常震撼的Windows任务管理器截图:乍一看似乎没啥特别的,几十甚至上百个逻辑核心的系统并不罕见 ...
- Spark数据本地化-->如何达到性能调优的目的
Spark数据本地化-->如何达到性能调优的目的 1.Spark数据的本地化:移动计算,而不是移动数据 2.Spark中的数据本地化级别: TaskSetManager 的 Locality L ...
- 零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程. 1.通用文本分类技术UTC介绍 本项目提供基于通用文本分类 UTC(Universal Text C ...
- 【Spark】Day06-Spark高级课程:性能调优、算子调优、Shuffle调优、JVM调优、数据倾斜、TroubleShooting
一.Spark性能调优 1.常规性能调优 (1)最优资源配置:Executor数量.Executor内存大小.CPU核心数量&Driver内存 (2)RDD优化:RDD复用.RDD持久化(序列 ...
- 大厂运维必备技能:PB级数据仓库性能调优
摘要:众所周知,数据量大了之后,性能是大家关注的一点,所以我们在业务开发的时候,特别关注性能,做为一个架构师,必须对性能要了解,要懂.才能设计出高性能的业务系统. 一.GaussDB分布式架构 所谓集 ...
- 大数据:Hive常用参数调优
1.limit限制调整 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果. 有一个配置属性可以开启,避免这种情况---对数据源进行抽样 hive.limit.optimize.e ...
- 【在网页中获取截图数据】Chrome和Firefox下的实战经验
[转载自我在segmentfault的专栏:https://segmentfault.com/a/1190000004584071] 最近在实现一个功能,需求如下: 前提:当前页面无弹窗 页面任意位置 ...
- Linux 系统级开启文件句柄 调优
系统级开启文件句柄 max-file系统级别的能够打开的文件句柄的数量,Centos7默认是794168. Max-file 与 ulimit -n 的区别 max-file 表示系统级别的能够打开 ...
- Linux 脏数据回刷参数与调优
简介 我们知道,Linux用cache/buffer缓存数据,且有个回刷任务在适当时候把脏数据回刷到存储介质中.什么是适当的时候?换句话说,什么时候触发回刷?是脏数据达到多少阈值还是定时触发,或者两者 ...
- 数据迁移过程中hive sql调优
本文记录的是,在数据处理过程中,遇到了一个sql执行很慢,对一些大型的hive表还会出现OOM,一步一步通过参数的设置和sql优化,将其调优的过程. 先上sql ) t where t.num =1) ...
随机推荐
- 如何使用二阶优化算法实现对神经网络的优化 —— 分布式计算的近似二阶优化算法实现对神经网络的优化 —— 《Distributed Hessian-Free Optimization for Deep Neural Network》
论文: <Distributed Hessian-Free Optimization for Deep Neural Network> 地址: https://arxiv.org/abs/ ...
- 使用GPU计算时,单精度float32类型和半精度float16类型运算效率的区别
最近在看资料时发现写着使用float16 半精度类型的数据计算速度要比float32的单精度类型数据计算要快,因为以前没有考虑过数据类型对计算速度的影响,只知道这个会影响最终的计算结果精度.于是,好奇 ...
- java主线程等待多个子线程中任意一个有结果后,主线程继续执行
1.背景 2.代码 package com.qianxingniwo.ls; import org.junit.Test; import java.util.concurrent.atomic.Ato ...
- 学习使用docker-compose搭建Redis哨兵集群
搭建的记录 Redis的容器部署后,redis-server的默认安装目录为 /usr/local/bin. docker volumes 映射的文件与本地的文件共享,修改本地文件后,需要重启dock ...
- condition字符串匹配问题
概述 freeswitch是一款简单好用的VOIP开源软交换平台. fs使用dialplan配置文件执行业务流程,condition条件变量的配置是必然会使用的,这里记录一次配置过程中的错误示范. 环 ...
- vue-表单与v-model
使用 v-model 后,表羊控件显示的值只依赖所绑定的数据,不再关心初始化时的 value 属性,对于 textarea></textarea> 之间插入的值,也不会生效. 使用 ...
- kubernetes负载感知调度
背景 kubernetes 的原生调度器只能通过资源请求来调度 pod,这很容易造成一系列负载不均的问题, 并且很多情况下业务方都是超额申请资源,因此在原生调度器时代我们针对业务的特性以及评估等级来设 ...
- Coursera, Big Data 5, Graph Analytics for Big Data, Week 4
Graph Analytics With Neo4j 讲了怎样用Cypher 脚本语言去操作 Neo4j, 包括加graph, 导入csv数据. 接着讲了一些neo4j 的基本操作. 最后讲的,pat ...
- C# – 6.0, 7.0, 8.0, 9.0 总结
前言 C# 这几年改了好几个版本, 多了许多语法糖,还带有 JavaScript / TypeScript 的味道了. 我觉得随着 blazor 的发展 (想取代前端开发 ?) 那 C# 必然需要更多 ...
- 前置机器学习(二):30分钟掌握常用Jupyter Notebook用法
相较于Pycharm执行py文件来说,Jupyter Notebook可保存执行过程,添加图表.注释等富文本说明的功能,使其对机器学习的开发者格外友好. 本文包含机器学习环境安装,Jupyter No ...