\(\mathscr{Description}\)

  Link.

  对于所有 \(n\times m\) 的矩阵 \(A\), \(a_{ij}\in[1,k]\cap\mathbb N\), 求

\[\sum_A\prod_{i,j}\min\left\{\min_{t=1}^m\{a_{it}\},\min_{t=1}^n\{a_{tj}\}\right\}\bmod P.
\]

  \(n,m,k\le100\), \(P\) 为素数.

\(\mathscr{Solution}\)

  很有想象力的状态设计, 不愧是 AGC. (

  (下令题面中 \(k\) 为 \(d\), \(k\) 另作他用.) 第一步是技巧性的转化: 把所有 "权值" 构造成方案数, 将问题变为纯纯的方案数计数问题. 这里不难将 \(A\) 的权值描述为满足 \(1\le b_{ij}\le a_{ij}\) 的矩阵 \(B\) 的数量. 我们就是要求所有 \((A,B)\) 的方案.

  令 \(f(i,j,k)\) 表示考虑了所有 \(B\) 中最大值 \(\in[1,i]\) 行列以及 \(A\) 中所有最小值 \(\in[1,i]\) 的行列, 总共有 \(j\) 行被考虑到, \(k\) 列被考虑到时, 所有可确定位置的方案数之和. 注意, 对于每个位置, 当其第一次被行 (或列) 考虑到时, 我们先确定其 \(B\) 中的值; 当其接着被列 (或行) 考虑到时, 我们再确定其 \(A\) 中的值.

  转移不妨先填出最小值为 \(i\) 的行, 再填出最小值为 \(i\) 的列.

  填行, 对于新被考虑到的一行:

  • 有 \(k\) 个位置在填 \(A\) 值. 因为本行最小值钦定为 \(i\), 所以方案数为 \((d-i+1)^k\).
  • 有 \(m-k\) 个位置在填 \(B\) 值. 同理, 方案数为 \(i^{m-k}-(i-1)^{m-k}\) (容斥使得至少有一个 \(i\), 限定新行上取出 \(B\) 的行最大值为 \(i\)).

  填列, 对于新被考虑到的一列:

  • 有 \(j\) 个位置在填 \(A\) 值. 方案数为 \((d-i+1)^j-(d-i)^j\) (容斥使得至少有一个 \(i\), 限定新列上取出 \(A\) 的列最大值为 \(i\)).
  • 有 \(n-j\) 个位置在填 \(B\) 值. 方案数为 \(i^{n-j}\).

  两个不那么对称的容斥限定使得 "新建行列上有 [\(B\) 的最大值 \(i\) / \(A\) 的最小值 \(i\) / 二者]" 三种情况都能唯一地取出来. 那么枚举每次新建的行列数量, 可以做到 \(\mathcal O(nmk(n+m))\) 转移求解.

\(\mathscr{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) const int MAXN = 100;
int n, m, d, P, bino[MAXN + 5][MAXN + 5], f[2][MAXN + 5][MAXN + 5]; inline int mul(const int u, const int v) { return 1ll * u * v % P; }
inline void subeq(int& u, const int v) { (u -= v) < 0 && (u += P); }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + P : u; }
inline void addeq(int& u, const int v) { (u += v) >= P && (u -= P); }
inline int add(int u, const int v) { return (u += v) < P ? u : u - P; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} inline void init() {
bino[0][0] = 1;
rep (i, 1, MAXN) {
bino[i][0] = 1;
rep (j, 1, i) bino[i][j] = add(bino[i - 1][j - 1], bino[i - 1][j]);
}
} int main() {
scanf("%d %d %d %d", &n, &m, &d, &P);
init(); f[0][0][0] = 1;
rep (i, 1, d) {
auto fcur = f[0], fnex = f[1];
rep (j, 0, n) rep (k, 0, m) {
if (int& cur = fcur[j][k]) {
int pw = 1, c = mul(sub(mpow(i, m - k),
mpow(i - 1, m - k)), mpow(d - i + 1, k));
rep (l, 0, n - j) {
addeq(fnex[j + l][k], mul(mul(bino[repl][l], pw), cur));
pw = mul(pw, c);
}
cur = 0;
}
} fcur = f[1], fnex = f[0];
rep (j, 0, n) rep (k, 0, m) {
if (int& cur = fcur[j][k]) {
int pw = 1, c = mul(sub(mpow(d - i + 1, j),
mpow(d - i, j)), mpow(i, n - j));
rep (l, 0, m - k) {
addeq(fnex[j][k + l], mul(mul(bino[repl][l], pw), cur));
pw = mul(pw, c);
}
cur = 0;
}
}
}
printf("%d\n", f[0][n][m]);
return 0;
}

Solution -「AGC 039F」Min Product Sum的更多相关文章

  1. Solution -「AGC 010C」「AT 2304」Cleaning

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的无根树,点有点权,每次选择两个不同的叶子,使它们间的简单路径的所有点权 \(-1\),问能否将所有点 ...

  2. Solution -「AGC 019F」「AT 2705」Yes or No

    \(\mathcal{Description}\)   Link.   有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no.每次你需要回答一个问题,然后得知这个 ...

  3. Solution -「AGC 034C」Tests

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{l_n\},\{r_n\},\{b_n\},X\),求最小的 \(s\),使得存在非负整数序列 \(\ ...

  4. Solution -「AGC 036D」「AT 5147」Negative Cycle

    \(\mathcal{Descriprtion}\)   Link.   在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除:还有边 \(\l ...

  5. Solution -「AGC 016F」Games on DAG

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...

  6. Solution -「AGC 026D」Histogram Coloring

    \(\mathcal{Description}\)   Link.   有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...

  7. Solution -「AGC 004E」「AT 2045」Salvage Robots

    \(\mathcal{Description}\)   Link.   有一个 \(n\times m\) 的网格.每个格子要么是空的,要么有一个机器人,要么是一个出口(仅有一个).每次可以命令所有机 ...

  8. Solution -「AGC 012F」「AT 2366」Prefix Median

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_{2n-1}\}\),将 \(\{a_{2n-1}\}\) 按任意顺序排列后,令序列 \(b_i\) 为前 ...

  9. Solution -「AGC 019E」「AT 2704」Shuffle and Swap

    \(\mathcal{Description}\)   Link.   给定 \(01\) 序列 \(\{A_n\}\) 和 \(\{B_n\}\),其中 \(1\) 的个数均为 \(k\).记 \( ...

  10. Solution -「AGC 013E」「AT 2371」Placing Squares

    \(\mathcal{Description}\)   Link.   给定一个长度为 \(n\) 的木板,木板上有 \(m\) 个标记点,第 \(i\) 个标记点距离木板左端点的距离为 \(x_i\ ...

随机推荐

  1. 管中窥豹----从String Intern中观察.NET Core到.NET 8 托管堆的变迁

    简介 https://www.cnblogs.com/lmy5215006/p/18494483 在此文中,研究.NET String底层结构时,我所观察到的情况与<.NET Core底层入门& ...

  2. 号码变换配置对接运营商IMS

    概述 freeswitch是一款简单好用的VOIP开源软交换平台. fs直接对接运营商,调试过程中的号码变换规则比较容易出问题. 本文档记录一个较为通用的对接IMS配置方案. 环境 CentOS 7. ...

  3. openresty操作mongodb

    最近项目中使用openresty,需要通过openresty连接mongo,经过几番折腾终于有了一个结果,现将其记录下来,也感谢模块提供者 使用openresty操作mongo 1.引入第三方的模块 ...

  4. php技术交流群

    php技术交流群-656679284,为PHP广大爱好者提供技术交流,有问必答,相互学习相互进步!也欢迎大牛入群指导!

  5. nvidia公司的机器人仿真环境的历史发展介绍(Isaac-Gym、Isaac-Sim)

    相关: NVIDIA机器人仿真项目 -- Isaac Gym - Preview Release 本文说下NVIDIA公司的机器人仿真项目的一些历史发展. NVIDIA公司的产品最初只有显卡,但是卖着 ...

  6. .NET使用Umbraco CMS快速构建一个属于自己的内容管理系统

    前言 今天大姚给大家分享一个.NET开源.免费(MIT License).功能强大.灵活易用的内容管理系统:Umbraco CMS.本文将介绍在.NET中如何使用Umbraco CMS快速构建一个属于 ...

  7. 浏览器实时查看日志系统-log.io

    log.io 是一个实时日志监控工具,采用 node.js + socket.io 开发,使用浏览器访问,每秒可以处理超过5000条日志变动消息.有一点要指出来的是 log.io 只监视日志变动并不存 ...

  8. ContosoRetailDW数据库恢复问题

    https://www.microsoft.com/en-us/download/details.aspx?id=18279 下载 ContosoBIdemoBAK.exe和ContosoBIdemo ...

  9. PythonDay6Advance

    PythonDay6Advance 模块.类与对象 模块 内置模块 time, random, os, json 第三方模块 requests, pandas, numpy,.... 自定义模块 xx ...

  10. GIT 使用SSH 方式提交代码

    1.需求 一般情况下,我们在提交代码的时候,使用 HTTP的方式提交代码,这种方式有一个问题,提交时需要输入账号和密码,这个就不是很安全,git 提供了 SSH的方式. 下面就实际操作一下如何使用ss ...