http://www.51nod.com/Challenge/Problem.html#!#problemId=1239

AC代码

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//莫比乌斯函数线性筛
{
int pos=;sum[]=phi[]=;
for(int i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+phi[i])%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
temp = (temp-solve(n/i)*(j-i+)%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
printf("%lld\n",solve(n));
}

51Nod 1239 欧拉函数前n项和 杜教筛的更多相关文章

  1. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  2. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  3. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  6. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  7. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  8. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  9. (数论)51NOD 1136 欧拉函数

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. Linux 安装Nginx+PHP+MySQL教程

    一.安装nginx 通过yum安装openssl: yum -y install openssl openssl-devel 通过yum安装pcre: yum -y install pcre-deve ...

  2. 第3-5课 填充左侧菜单/品牌的添加 Thinkphp5商城第四季

    目录 左侧菜单的填充 品牌的添加 form标签里要加上method="post" enctype="multipart/form-data" form标签里如果 ...

  3. 在spring boot中使用webSocket组件(二)

    该篇演示如何使用websocket创建一对一的聊天室,废话不多说,我们马上开始! 一.首先先创建前端页面,代码如下图所示: 1.login.html <!DOCTYPE html> < ...

  4. CDH4 journalnode方式手工安装手册之二

    一.                                Hadoop配置修改 修改core-site.xml文件 <configuration> <property> ...

  5. winServer08上安装SQL时提示“必须使用管理角色安装”或配置microsoft.net framework 3.5

    server 2008安装vs2008后报错,如图: 解决方法: 控制面板—>程序—>打开或关闭Windows功能—>进入服务器管理器选择功能—>添加功能 然后勾选.NET F ...

  6. Hive中集合类型

    Hive中集合类型 创建表,集合是以 - 分割的 数据文件 加载数据 查询数据 查询数组中第一个字段 再建一个表,使用map 查看数据文件 加载数据 查询数据 查询键值 创建表,struct类型 查看 ...

  7. JS实现——贪吃蛇

    把以下代码保存成Snake.html文件,使用Google或360浏览器打开 <!DOCTYPE HTML> <html> <head> <meta char ...

  8. Educational Codeforces Round 34 (Rated for Div. 2)

    A. Hungry Student Problem time limit per test 1 second memory limit per test 256 megabytes input sta ...

  9. EF知识和经验

    AsNoTracking提高查询性能 AsNoTracking的作用就是在查询的时候不做追踪,这样会查询的更快,但是这样做会有一个缺陷(不能对查询的数据做修改操作). var student2 = d ...

  10. JQUERY杂技

    JQUERY小技巧 this.value jsobject.val() #aaa:eq(2) 选择第三个id为aaa的元素 $("input")只选择input标签.如:<i ...