http://www.51nod.com/Challenge/Problem.html#!#problemId=1239

AC代码

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
const int maxn=1e6+,inf=0x3f3f3f3f;
typedef long long ll;
const ll mod = ;
typedef pair<int,int> pii;
int check[maxn],prime[maxn],phi[maxn],sum[maxn];
void Phi(int N)//莫比乌斯函数线性筛
{
int pos=;sum[]=phi[]=;
for(int i = ; i <= N ; i++)
{
if (!check[i])
prime[pos++] = i,phi[i]=i-;
for (int j = ; j < pos && i*prime[j] <= N ; j++)
{
check[i*prime[j]] = ;
if (i % prime[j] == )
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
sum[i]=(sum[i-]+phi[i])%mod;
}
}
unordered_map<ll,ll> ma;
ll inv2=;
ll solve(ll n)
{
if(n<=1e6)
return sum[n];
else if(ma.count(n))
return ma[n];
ll temp = ((n%mod)*((n+)%mod)%mod)*inv2%mod;
for(ll i=,j;i<=n;i=j+)
{
j=n/(n/i);
temp = (temp-solve(n/i)*(j-i+)%mod+mod)%mod;
}
return ma[n]=temp;
}
int main()
{
ll n;
Phi(1e6);
scanf("%lld",&n);
printf("%lld\n",solve(n));
}

51Nod 1239 欧拉函数前n项和 杜教筛的更多相关文章

  1. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  2. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  3. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  6. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  7. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  8. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  9. (数论)51NOD 1136 欧拉函数

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. Python爬虫系列-Requests库详解

    Requests基于urllib,比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求. 实例引入 import requests response = requests.get( ...

  2. Java使用Apache的HttpClient组件发送https请求

    如果我们直接通过普通的方式对https的链接发送请求,会报一个如下的错误: javax.net.ssl.SSLHandshakeException: sun.security.validator.Va ...

  3. Oracle redo与undo 第一弹

      一. 什么是redo(用于前滚数据) redo也就是重做日志文件(redo log file),Oracle维护着两类重做日志文件:在线(online)重做日志文件和归档(archived)重做日 ...

  4. 有限状态机(FSM)的设计与实现

    有限状态机(FSM)是表示有限个状态及在这些状态之间的转移和动作等行为的数学模型,在计算机领域有着广泛的应用.通常FSM包含几个要素:状态的管理.状态的监控.状态的触发.状态触发后引发的动作.本文主要 ...

  5. 29、在android中采用动画方案来弹出窗口

    1.自定义style 2.使用方法: buttonWhat.setOnClickListener(new OnClickListener() { @Override public void onCli ...

  6. java内存模型学习

    根据 JVM 规范,JVM 内存共分为虚拟机栈.堆.方法区.程序计数器.本地方法栈五个部分. 虚拟机的内存模型分为两部分:一部分是线程共享的,包括 Java 堆和方法区:另一部分是线程私有的,包括虚拟 ...

  7. javascript学习笔记 - 变量、作用域和内存问题

    一 垃圾收集 javascript具有自动垃圾收集机制.由垃圾收集机制标找出不再使用的变量.按照固定间隔的时间进行销毁,释放内存.  1.找出不再使用的变量的方法,如下: 1-1.标记清除 垃圾回收器 ...

  8. 【mysql优化 3】嵌套循环连接算法

    原文地址:Nested-Loop Join Algorithms mysql在表之间执行连接操作,包括了使用循环嵌套算法或者其他在此基础上的变形. 循环嵌套连接算法: 一个简单的嵌套循环连接(NLJ: ...

  9. 防止csrf

    //防csrf攻击 $csrf_hash = md5(uniqid(rand(), TRUE)); set_cookie("my_csrf_name", $csrf_hash, 0 ...

  10. iOS----OC特性-特殊功能宏

    1.NS_ASSUME_NONNULL_BEGIN && NS_ASSUME_NONNULL_END 在Swift中存在Option类型,也就是使用?和!声明的变量.但是OC里面没有这 ...