[NOI2002] 贪吃的九头蛇
考虑任意一种划给大头的方案,两端的都给了大头(bel=1)的边产生难受值,剩下n-k个果子分给m-1个头,当m-1=1时,两端都给了这个小头也产生难受值;而m-1>1的情况要好看的多,贪心的,因为未划分的果子构成一个森林,重新计算这些果子在所在树中的深度,把果子按深度排序,前m-1个个分别划分,剩下的节点任意分配,只需要保证与父亲不同即可,显然按这种分配方法能做到“零难受”。
换而言之,当m=2时只有两端分配不同才不会有难受值(废话!);否则,只有两端都分配给了1(大头)才会有难受值。然后就能写dp了,设f[x,0/1]表示x子树中,x是否划分给了1的最小难受值之和。
+\infty &x\text{是最大值点}\\
\sum_{x\to y} \min(f[y,0]+len_{x\to y},f[y,1]) &m=2\\
\sum_{x\to y} \min(f[y,0],f[y,1]) &m>1
\end{cases}\\
f[x,1]=\sum_{x\to y} \min(f[y,0],f[y,1]+len_{x\to y})
\]
似乎很可信的样子……可行个喘喘,怎么着也得加一位表示子树内已经分配给1的节点总数吧……反正不再列式子了(光速逃
#include <bits/stdc++.h>
using namespace std;
const int N=310;
int n,m,k;
int head[N],to[N<<1],len[N<<1],lst[N<<1];
int siz[N],f[N][N][2],tmp[N][2];
void ins(int x,int y,int w) {
static int cnt=0;
to[++cnt]=y,len[cnt]=w,lst[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,len[cnt]=w,lst[cnt]=head[y],head[y]=cnt;
}
void dfs(int x,int pa) {
siz[x]=1;
memset(f[x],0x3f,sizeof f[x]);
f[x][0][0]=f[x][1][1]=0;
for(int i=head[x]; i; i=lst[i]) if(to[i]!=pa) {
int y=to[i];
dfs(y,x); siz[x]+=siz[y];
memcpy(tmp,f[x],sizeof f[x]);
memset(f[x],0x3f,sizeof f[x]);
for(int s=0; s<=k&&s<=siz[x]; ++s)
for(int t=0; t<=s&&t<=siz[y]; ++t) {
f[x][s][0]=min(f[x][s][0],min(f[y][t][0]+(m==2)*len[i],f[y][t][1])+tmp[s-t][0]);
f[x][s][1]=min(f[x][s][1],min(f[y][t][0],f[y][t][1]+len[i])+tmp[s-t][1]);
}
}
}
int main() {
scanf("%d%d%d",&n,&m,&k);
for(int x,y,w,i=n; --i; ) {
scanf("%d%d%d",&x,&y,&w);
ins(x,y,w);
}
if(m-1+k>n) {
puts("-1");
return 0;
}
dfs(1,0);
printf("%d\n",f[1][k][1]);
return 0;
}
[NOI2002] 贪吃的九头蛇的更多相关文章
- [codevs1746][NOI2002]贪吃的九头龙
[codevs1746][NOI2002]贪吃的九头龙 试题描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时 ...
- [NOI2002]贪吃的九头龙(树形dp)
[NOI2002]贪吃的九头龙 题目背景 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是 说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的 ...
- vojis1523 NOI2002 贪吃的九头龙
描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落. 有一天, ...
- [NOI2002] 贪吃的九头龙
题目类型:树形DP 传送门:>Here< 题意:有一只九头龙要吃了一颗树,给出一棵\(N\)个节点的带边权的树.九头龙有\(M\)个头,其中一个是大头,大头要吃恰好\(K\)个节点,其他头 ...
- Vijos1523 NOI2002 贪吃的九头龙 树形dp
思路不算很难,但细节处理很麻烦 前面建图.多叉转二叉,以及确定dp处理序列的过程都是套路,dp的状态转移过程以注释的形式阐述 #include <cstdio> #include < ...
- 洛谷 P4362 [NOI2002]贪吃的九头龙
https://www.luogu.org/problemnew/show/P4362 首先有个很显然的dp:ans[i][j][k]表示i节点用j号头,i节点为根的子树中共有k个点用大头时i节点为根 ...
- Vijos1523贪吃的九头龙【树形DP】
贪吃的九头龙 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头 ...
- [转帖]利用hydra(九头蛇)暴力破解内网windows登录密码
利用hydra(九头蛇)暴力破解内网windows登录密码 https://blog.csdn.net/weixin_37361758/article/details/77939070 尝试了下 能够 ...
- hydra(九头蛇)多协议暴力破解工具
一.简介 hydra(九头蛇)全能暴力破解工具,是一款全能的暴力破解工具,使用方法简单 二.使用 使用hydra -h 查看基本用法 三.命令 hydra [[[-l LOGIN|-L FILE] [ ...
随机推荐
- mvn 创建的项目 导入到eclipse
首先,我的工具版本如下: jdk: java version "1.6.0_10-rc2"; maven: apache-maven-3.1.0; eclipse: MyEclip ...
- jzyz集训 0611
今天jjh和mzx搞的互测题目有必要记录一下. T1:序列上可以放012三种颜色,有m个限制表示[l,r]区间的颜色数目必须是c,求方案数. 显然的DP,但关键是状态怎么设置,连续设置了n个状态都被自 ...
- 20145239杜文超 《Java程序设计》第10周学习总结
20145239 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据. 网络概述 1.计算机 ...
- git 生成patch和应用patch【转】
本文转载自:http://www.jianshu.com/p/814fb6606734 1.在git源码目录下执行 1.1.两个commit间的修改(包含两个commit) git format-pa ...
- UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理
题目链接:https://vjudge.net/problem/UVA-10294 题解: 白书P146~147. 为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元 ...
- TestDescription文档描述测试过程
测试描述文档是用xml语言描述测试过程的文档,一个测试过程包括测试信号建立,UUT引脚确定,建立连接关系,数据测量,断开连接关系,复位测试信号等步骤. 下图用标准的ATML语言描述了接通直流电源并测量 ...
- poj 2689Prime Distance(区间素数)埃氏筛法
这道题的L和R都很大,所以如果直接开一个1~R的数组明显会超时.但是R-L并不大,所以我们考虑把这个区间(L--R)移动到(1--(R-L+1))这个区间再开数组(就是把每个数减L再加1).接下来先用 ...
- P1150 Peter的烟
题目描述 Peter有n根烟,他每吸完一根烟就把烟蒂保存起来,k(k>1)个烟蒂可以换一个新的烟,那么Peter最终能吸到多少根烟呢? 输入输出格式 输入格式: 每组测试数据一行包括两个整数n( ...
- python script
1.tab键自动补全(每次导入时要将脚本的路径加入到sys.path中) import sysimport readlineimport rlcompleterimport atexitimport ...
- C#支持从自定义日期时间格式到DateTime类型
/// <summary> /// /// </summary> /// <param name=&quo ...