PS:字丑,禁止转载!!!

首先先写出大概的流程,然后是一些教材的理论知识总结,最后是进行lab2的一些流程概述。

教材的理论知识总结主要是:数字集成电路物理设计学习总结——布图规划和布局

-->数据准备(设置)、加载设计并切换到floorplan模式

--> 创建拐角(Corner)和电源地(P/G)单元并定义他们pad的位置

-->创建floorplan

-->在电源/接地信号和I / O焊盘,宏和标准单元的所有电源/接地引脚之间建立“逻辑”连接

-->创建pad的电源环,保存电源环创建后的设计

-->验证当前虚拟平面放置策略选项是否具有默认设置

-->设置sliver 的尺寸,防止标准单元放置在宏单元之间的狭窄通道

-->使用“无层次结构重力”(选项)来执行  时序驱动的虚拟平台放置

-->进行宏单元布局约束

-->检查设置

-->所有宏单元周围设置10微米的硬限制边距

-->再次进行宏单元布局,锁定所有的宏,保存IO、宏单元布局规划后的设计

-->在宏单元周围创建P/G环

-->电源网络综合:对核心电源环、宏单元环、垂直以及水平环带进行约束、提交电源计划、连接所有宏单元上的电源引脚,并创建标准单元电源轨道(power rail)、保存这一阶段的设计

-->检查时序

-->写出DEF文件

-->为布局做准备而创建第二遍(布局规划)设计

上面是理论知识,下面是lab实践:

首先就进行数据设置,数据建立(设置)之后,保存为orca_setup

数据设置的过程在lab2实验中是没有详细叙述的,也就是说只给出了数据建立的结果:orca_setup

本次workshop实验需要准备/用到的数据为:

需要说明的是,圈圈的文件,在数据设置阶段就已经准备好了,其他方框的则是本次实验需要准备的。

下面就是正式过程了:

一、加载设计

启动ICC后,加载orca_setup这数据设置阶段产生的阶段设计,然后执行时序优化的控制脚本:

source scripts/opt_ctrl.tcl

然后在layout窗口中切换到design planning模式下:

File  --> Task  --->Design Planning

二、初始化平面图(floorplan),也是创建布局规划

1、创建拐角(Corner)和电源地(P/G)单元并定义他们pad的位置:

因为逻辑综合的网表里面没有上面的这些物理单元,我们需要自己创建,才能进行放置他们的位置,创建只要执行下面的脚本:

source –echo scripts/pad_cell_cons.tcl

pad_cell_cons.tcl脚本里面的内容主要是:

·创建Corners  pad和power/group pads

·定义Corner pad 的位置

·定义signal pad 和 power pad的位置(主要是分为左边、右边、顶层和底层)

2、初始化floorplan

需要注意的是,icc2013.3以后(包括),初始化floorplan不能用initial_floorplan,而是用create_floorplan(也就是进行布局规划).

3、插入pad fillers,填充pad之间的间隙

执行命令:

source  ./scripts/insert_pad_filler.tcl

这个脚本文件主要定义要插入的filler cells

4、在电源/接地信号和I / O焊盘,宏和标准单元的所有电源/接地引脚之间建立“逻辑”连接(无物理布线),也就是执行前面数据设置中没有进行的第6步:

source –echo scripts/connect_pg.tcl

5、创建pad的电源环:

create_pad_rings

6、保存电源环创建后的设计

save_mw_cel –as  floorplan_init

三、将连接到IOpad的宏单元进行预布置(也就是布置好宏单元到核心区)

这里可以通过手动,也可以用脚本进行:

source –echo scripts/preplace_macros.tcl

这个脚本就是进行对三个宏单元的位置进行规划

四、执行虚拟平面放置

1、验证当前虚拟平面放置策略选项是否具有默认设置:

report_fp_placement_strategy (个人理解也就是查看各种放置默认信息)

2、设置sliver 的尺寸,防止标准单元放置在宏单元之间的狭窄通道(sliver size <10)中:

set_fp_placement_strategy    -sliver_size   10

3、使用“无层次结构重力”(选项)来执行  时序驱动的虚拟平台放置(以确保“逻辑层次结构”不会影响此非层次结构或平面布局的放置):

create_fp_placement –timing_driven  -no_hierarchy_gravity

上面的这个命令的效果就是把宏单元的位置放好(在核心区域上)

4、把一些宏转换成数组,电源和接地带和宏单元环的布线可以更容易。将宏单元置于尽可能接近芯片的边缘,将宏尽可能多地组合在一起、打开虚拟IPO以模仿时序优化(并防止不必要的布局优化)、限制某些RAM的合法布局方向,上面的四个操作通过执行脚本完成:(宏单元布局约束脚本)

source –echo scripts/macro_place_cons.tcl

5、检查设置:

report_fp_placement_strategy

report_fp_macro_options

6、 所有宏单元周围设置10微米的硬限制边距。 这样容易在宏单元周围创建P / G环,并避免拥塞以及宏单元周围的信号布线DRC错误:

source -echo scripts/keepout.tcl

7、再次进行宏单元布局:

create_fp_placement   -timing_driven   -no_hierarchy_gravity

可以进行拥塞分析

8、锁定所有的宏:

set_dont_touch_placement   [all_macro_cells]

9、保存IO、宏单元布局规划后的设计:

save_mw_cel -as floorplan_placed

五、在宏单元周围创建P/G环

P/G环的创建方式(或者依据内容)主要有

·定义包含一组宏的粗略“区域”

·定义block  ring  layers,宽度和偏移量

·创建(提交)金属布线

通过执行脚本创建宏单元的P/G环:

source   ./scripts/macro_pg_rir ngs.tcl

六、电源网络综合

1、对核心电源环、宏单元环、垂直以及水平环带进行约束

·电源带约束

·对核心的电源带约束

·为没有电源环的PLL定义宏单元环

·进行全局约束

执行脚本:

scripts / pns.tcl

2、提交电源计划:

commit_fp_rail

3、连接所有宏单元上的电源引脚,并创建标准单元电源轨道(power rail):

preroute_instances

preroute_standard_cells –fill_empty_rows \

-remove_floating_pieces

创建完之后,可以进行IR drop分析

4、保存这一阶段的设计

save_mw_cel   -as   floorplan_pns

七、检查时序

1、PNS在METAL4和METAL5上产生了许多电源带,这些带放在标准单元上。可以有利地防止标签单元放置在带下 - 这降低了沿带的拥塞的可能性,并且减少了对电源网络的串扰影响。 在带上应用“完整”电源网(pnet)阻塞,然后再次运行虚拟平面放置以考虑pnet设置:

set_pnet_options -complete "METAL4 METAL5"

create_fp_placement  -timing_driven  -no_hierarcI hy_gravity

2、通过执行实际布线进行检查时序:

route_zrt_global

3、使用“view,查看”过程生成最大延迟(建立时间)时序报告(更新时序和生成报告需要几秒钟):

v report_timing

如果有时序违规,则可以重新进行优化布线:

optimize_fp_timing –fix_design_rule

4、保存设计

save_mw_cel -as floorplan_complete

八、写出DEF文件

删除所有放置的标准单元,然后以DEF格式写出floorplan文件。这个DEF平面规划文件将被Design Compiler Topographical  使用来再次综合;然后在ICC再次读入再次综合后的网表后,再用ICC进行布局规划:

下面是删除所有放置的标准单元,然后以DEF格式写出floorplan文件:

remove_placement -object_type standard_cell

九、为布局做准备而创建第二遍(布局规划)设计

假装这个设计是从RTL代码使用DC的拓扑模式重新综合的,重新综合的过程使用上一步生成的DEF文件。这是我们得到第二遍网表ORCA_2.v以及更新后的约束文件ORCA_2.sdc。

1、使用新的ORCA网表和约束执行数据设置:

source -echo scripts/2nd_pass_setup.tcl

这个脚本进行了标准的数据设置准备。

2、读入上一个步骤写出的def文件:

read_def design_data/ORCA.def

3、新应用的电源网络合成后应用的pnet选项。这些设置不在DEF文件中定义:

set_pnet_options -complete "METAL4 METAL5"

4、将设计保存为ready_for_placement:

save_mw_cel   -as   ready_for_placement

ICC的设计规划实验大概流程就是这样了,其中主要跑脚本,脚本的内容才是设计规划的内容,要把脚本的内容参透才真正把这个实验的内容参透。时间问题,这里就不仔细去看了,主要学习流程.

-->数据准备(设置)、加载设计并切换到floorplan模式

--> 创建拐角(Corner)和电源地(P/G)单元并定义他们pad的位置

-->创建floorplan

-->在电源/接地信号和I / O焊盘,宏和标准单元的所有电源/接地引脚之间建立“逻辑”连接

-->创建pad的电源环,保存电源环创建后的设计

-->验证当前虚拟平面放置策略选项是否具有默认设置

-->设置sliver 的尺寸,防止标准单元放置在宏单元之间的狭窄通道

-->使用“无层次结构重力”(选项)来执行  时序驱动的虚拟平台放置

-->进行宏单元布局约束

-->检查设置

-->所有宏单元周围设置10微米的硬限制边距

-->再次进行宏单元布局,锁定所有的宏,保存IO、宏单元布局规划后的设计

-->在宏单元周围创建P/G环

-->电源网络综合:对核心电源环、宏单元环、垂直以及水平环带进行约束、提交电源计划、连接所有宏单元上的电源引脚,并创建标准单元电源轨道(power rail)、保存这一阶段的设计

-->检查时序

-->写出DEF文件

-->为布局做准备而创建第二遍(布局规划)设计

ICC_lab总结——ICC_lab2:设计规划的更多相关文章

  1. ICC_lab总结——ICC_lab1:数据设置和基本流程

    ICC_lab总结 最近在学习后端的流程,做lab是最好不过了.但是有时候做过了lab,过了一段时间之后就会忘记,因此需要自己总结一下,加强印象. ICC_lab1:数据设置和基本流程 数据设置: 一 ...

  2. ICC_lab总结——ICC_lab3:布局

    PS:字丑,禁止转载. 做到了ICC workshop的第三个实验,理论与实践相结合,于是,先放一张总结图,这张总结图来自前面的博客,放在这里用来体现理论和实践的联系: 这个就是布局的理论部分,在IC ...

  3. ICC_lab总结——ICC_lab4:时钟树综合

    时钟树综合的理论知识总结在这里:http://www.cnblogs.com/IClearner/p/6580034.html 下面是实践环节:使用ICC进行时钟树综合. 这个实验的目标是: ·设置C ...

  4. ICC_lab总结——ICC_lab6:版图完成

    ICC_workshop的最后一个实验了.在这次的实验中,由于我使用ICC的版本与workshop的lab不是同一个版本,因此在后面的实验过程不是很顺利,主要是在LVS的过程中,最后的LVS没有通过. ...

  5. ICC_lab总结——ICC_lab5:布线&&数字集成电路物理设计学习总结——布线

    字丑,禁止转载! 这里将理论总结和实践放在一起了. 布线的理论总结如下所示: 下面是使用ICC进行实践的流程: 本次的布线实验主要达成的目标是: ·对具有时钟树布局后的设计进行可布线性检查 ·完成布线 ...

  6. FPGA设计千兆以太网MAC(2)——以太网协议及设计规划

    上篇该系列博文中通过MDIO接口实现了PHY芯片的状态检测,验证其已处于1000M 全双工工作模式.在设计MAC逻辑之前,要先清楚MAC与PHY之间的接口以及以太网协议细节,这样才能保证网络的兼容性. ...

  7. tp框架之模板继承

    模板继承是一项更加灵活的模板布局方式,模板继承不同于模板布局,甚至来说,应该在模板布局的上层.模板继承其实并不难理解,就好比类的继承一样,模板也可以定义一个基础模板(或者是布局),并且其中定义相关的区 ...

  8. [Architecture] 系统架构正交分解法

    [Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...

  9. 我心中的MySQL DBA

    原文网址链接:http://wangwei007.blog.51cto.com/68019/1718311 MySQL是一个跨平台的开源关系型数据库管理系统,目前MySQL被广泛地应用在Interne ...

随机推荐

  1. EmitMapper 和TinyMapper 两者简单对比

    EmitMapper 和TinyMapper 两者的性能都是很高,相比autoMapper 速度不知道快了多少倍,因为使用的最多EmitMapper,所在业余时间做了一下测试对比. 测试数据:10万条 ...

  2. js-面试题1

    //1. y 和 z的值? ; ; ; function add(n){n=n+;} y = add(x); function add(n){n=n+;} z = add(x); //y,z输出und ...

  3. Hadoop 的安装及配置

    Linux RedHat--CentOs     CentOs 6.4 Debian--Ubuntu   VMware 虚拟机 关于虚拟机实现上网的解决办法         NAT: 网络地址转换 当 ...

  4. NodeJS Stream 五:双工流

    双工流就是同时实现了 Readable 和 Writable 的流,即可以作为上游生产数据,又可以作为下游消费数据,这样可以处于数据流动管道的中间部分,即 rs.pipe(rws1).pipe(rws ...

  5. How To Ask Questions The Smart Way 转

    先查后问多思考莫做伸手党. 原文链接 译文链接

  6. 关于hibernate注解的简单应用

    @Override 用途:重写父类的同名方法 单元测试注解 @Test 用途:用于测试 @Before 用途:单测方法走之前执行 @After 用途:单测方法走之后执行 注解的目标:替换小配置.替换h ...

  7. DataTable && SqlDataReader帮助理解小程序

    // 2015/07/08 using System; using System.Collections.Generic; using System.Linq; using System.Text; ...

  8. 【Java深入研究】2、JVM类加载机制

    一.先看看编写出的代码的执行过程: 二.研究类加载机制的意义 从上图可以看出,类加载是Java程序运行的第一步,研究类的加载有助于了解JVM执行过程,并指导开发者采取更有效的措施配合程序执行. 研究类 ...

  9. HTML5拖放加入购物车

    H5拖放事件巩固实例: 1.简单布局一下,商品信息放入一个ul中:div为购物车,后续会创建元素 <ul> <li draggable="true"> &l ...

  10. C# winform程序免安装.net framework在XP/win7/win10环境运行!

    前文: 首先感谢群里的大神宇内流云 提供的anyexec for windows版本. 经过本人搭建虚拟机在xp环境 使用anyexec运行winfrom程序后,测试通过,如下是用的xp运行winfr ...