Python 项目实践二(生成数据)第一篇
上面那个小游戏教程写不下去了,以后再写吧,今天学点新东西,了解的越多,发现python越强大啊!
数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。数据集可以是用一行代码就能表示的小型数字列表,也可以是数以吉字节的数据。
用。最流行的工具之一是matplotlib,它是一个数学绘图库,我们将使用它来制作简单的图表,如折线图和散点图。然后,我们将基于随机漫步概念生成一个更有趣的数据集——根据一系列随机决策生成的图表。我们还将使用Pygal包,它专注于生成适合在数字设备上显示的图表。通过使用Pygal,可在用户与图表交互时突出元素以及调整其大小,还可轻松地调整整个图表的尺寸,使其适合在微型智能手表或巨型显示器上显示。我们将使用Pygal以各种方式探索掷骰子的结果。
一 折线图
1 绘制简单的折线图
下面来使用matplotlib绘制一个简单的折线图,再对其进行定制,以实现信息更丰富的数据可视化。我们将使用平方数序列1、4、9、16和25来绘制这个图表。
import matplotlib.pyplot as plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show()
运行结果如下图:
plt.show()打开matplotlib查看器,并显示绘制的图形,
2 修改标签文字和线条粗细
import matplotlib.pyplot as plt squares=[1,4,9,16,25] plt.plot(squares,linewidth=5) #设置图标标题,并给坐标轴加上标签 plt.title("Square Numbers",fontsize=24) plt.xlabel("value",fontsize=14) plt.ylabel("Square of value",fontsize=14) #设置刻度标记的大小 plt.tick_params(axis="both",labelsize=14) plt.show()
代码注释的很详细了,这里再强调几点:
(1)参数linewidth决定了plot()绘制的线条的粗细。函数title()给图表指定标题
(2)函数xlabel()和ylabel()让你能够为每条轴设置标题
(3)在上述代码中,出现了多次的参数fontsize指定了图表中文字的大小。
(4)函数tick_params()设置刻度的样式
运行结果如下图:
3 校正图像
图形更容易阅读后,我们发现没有正确地绘制数据:折线图的终点指出4.0的平方为25!下面修复这个问题。
当你向plot()提供一系列数字时,它假设第一个数据点对应的x坐标值为0,但我们的第一个点对应的x值为1。为改变这种默认行为,我们可以给plot()同时提供输入值和输出值:
import matplotlib.pyplot as plt input_values=[1,2,3,4,5] squares=[1,4,9,16,25] plt.plot(input_values,squares,linewidth=5) #设置图标标题,并给坐标轴加上标签 plt.title("Square Numbers",fontsize=24) plt.xlabel("value",fontsize=14) plt.ylabel("Square of value",fontsize=14) #设置刻度标记的大小 plt.tick_params(axis="both",labelsize=14) plt.show()
结果如下:
二 散点图
1 使用scatter()绘制散点图并设置其样式
要绘制单个点,可使用函数scatter(),并向它传递一对x和y坐标,它将在指定位置绘制一个点:
import matplotlib.pyplot as plt plt.scatter(2,4) plt.show()
下面来设置输出的样式,使其更有趣:添加标题,给轴加上标签,并确保所有文本都大到能够看清:
import matplotlib.pyplot as plt plt.scatter(2,4,s=400) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) plt.show()
2 使用scatter()绘制一系列的点
要绘制一系列的点,可向scatter()传递两个分别包含x值和y值的列表,如下所示:
import matplotlib.pyplot as plt x_values=[1,2,3,4,5] y_values=[1,4,9,16,25] plt.scatter(x_values,y_values,s=400) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) plt.show()
列表x_values包含要计算其平方值的数字,而列表y_values包含前述每个数字的平方值。将这些列表传递给scatter()时,matplotlib依次从每个列表中读取一个值来绘制一个点。要绘制的点的坐标分别为 (1, 1)、(2, 4)、(3, 9)、(4, 16)和(5, 25),最终的结果如图:
三 自动计算数据
手工计算列表要包含的值可能效率低下,需要绘制的点很多时尤其如此。可以不必手工计算包含点坐标的列表,而让Python循环来替我们完成这种计算。下面是绘制1000个点的代码:
import matplotlib.pyplot as plt x_values = list(range(1,1001)) y_values = [x**2 for x in x_values] plt.scatter(x_values,y_values,s=40) # 设置图表标题并给坐标轴加上标签 plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='major', labelsize=14) #设置每个坐标的取值范围 plt.axis([0,1100,0,1100000]) plt.show()
由于这个数据集较大,我们将点设置得较小,并使用函数axis()指定了每个坐标轴的取值范围。函数axis()要求提供四个值:x和y坐标轴的最小值和最大值,结果如下图:
四 删除数据点的轮廓
matplotlib允许你给散点图中的各个点指定颜色。默认为蓝色点和黑色轮廓,在散点图包含的数据点不多时效果很好。但绘制很多点时,黑色轮廓可能会粘连在一起。要删除数据点的轮廓可在调用scatter()时传递实参edgecolor='none':
plt.scatter(x_values, y_values, edgecolor='none', s=40)将相应调用修改为上述代码后,如果再运行scatter_squares.py,在图表中看到的将是蓝色实心点。
五 自定义颜色
要修改数据点的颜色,可向scatter()传递参数c,并将其设置为要使用的颜色的名称,如下
plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40)
你还可以使用RGB颜色模式自定义颜色。要指定自定义颜色,可传递参数c,并将其设置为一个元组,其中包含三个0~1之间的小数值,它们分别表示红色、绿色和蓝色分量。例如,下面的代码行创建一个由淡蓝色点组成的散点图:
plt.scatter(x_values, y_values, c=(0, 0, 0.8), edgecolor='none', s=40)
值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅。
六 使用颜色映射
颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值。
模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor="none",s=40)
我们将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色,生成的图形如图。
七 自动保存图片
要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.savefig()的调用:
plt.savefig('squares_plot.png', bbox_inches='tight')
第一个实参指定要以什么样的文件名保存图表,这个文件将存储到scatter_squares.py所在的目录中;第二个实参指定将图表多余的空白区域裁剪掉。如果要保留图表周围多余的空白区域,可省略这个实参。
Python 项目实践二(生成数据)第一篇的更多相关文章
- Python 项目实践二(生成数据)第二篇之随机漫步
接着上节继续学习,在本节中,我们将使用Python来生成随机漫步数据,再使用matplotlib以引人瞩目的方式将这些数据呈现出来.随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向 ...
- Python 项目实践二(生成数据)第二篇
接着上节继续学习,在本节中,我们将使用Python来生成随机漫步数据,再使用matplotlib以引人瞩目的方式将这些数据呈现出来.随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向 ...
- Python 项目实践二(下载数据)第三篇
接着上节继续学习,在本章中,你将从网上下载数据,并对这些数据进行可视化.网上的数据多得难以置信,且大多未经过仔细检查.如果能够对这些数据进行分析,你就能发现别人没有发现的规律和关联.我们将访问并可视化 ...
- Python 项目实践二(下载数据)第四篇
接着上节继续学习,在本节中,你将下载JSON格式的人口数据,并使用json模块来处理它们.Pygal提供了一个适合初学者使用的地图创建工具,你将使用它来对人口数据进行可视化,以探索全球人口的分布情况. ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - Guava Cache
文章目录 1. Guava Cache 集成 2. 个性化配置 3. 源代码 本文,讲解 Spring Boot 如何集成 Guava Cache,实现缓存. 在阅读「Spring Boot 揭秘与实 ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - 快速入门
文章目录 1. 声明式缓存 2. Spring Boot默认集成CacheManager 3. 默认的 ConcurrenMapCacheManager 4. 实战演练5. 扩展阅读 4.1. Mav ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - Redis Cache
文章目录 1. Redis Cache 集成 2. 源代码 本文,讲解 Spring Boot 如何集成 Redis Cache,实现缓存. 在阅读「Spring Boot 揭秘与实战(二) 数据缓存 ...
- Spring Boot 揭秘与实战(二) 数据缓存篇 - EhCache
文章目录 1. EhCache 集成 2. 源代码 本文,讲解 Spring Boot 如何集成 EhCache,实现缓存. 在阅读「Spring Boot 揭秘与实战(二) 数据缓存篇 - 快速入门 ...
- Spring Boot 揭秘与实战(二) 数据存储篇 - 声明式事务管理
文章目录 1. 声明式事务 2. Spring Boot默认集成事务 3. 实战演练4. 源代码 3.1. 实体对象 3.2. DAO 相关 3.3. Service 相关 3.4. 测试,测试 本文 ...
随机推荐
- ssh简单配置
Port 2223Protocol 2HostKey /etc/ssh/ssh_host_rsa_keyHostKey /etc/ssh/ssh_host_dsa_keyKeyRegeneration ...
- SSH框架的多表查询(方法二)增删查改
必须声明本文章==>http://www.cnblogs.com/zhu520/p/7773133.html 一:在前一个方法(http://www.cnblogs.com/zhu520/p ...
- ccf 火车购票
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main2 { pu ...
- work 2013-07-19
今天,在现场进行了数据库的优化,将数据库的日志截断和压缩了 use 测试库backup log 测试库 with no_logdbcc shrinkfile (测试库_Data,1)dbcc shri ...
- 数字三角形-poj
题目要求: 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 在上面的数字三角形中寻找在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大.路径上的每一步都只能往左 ...
- node入门笔记
看了<node入门>http://www.nodebeginner.org/index-zh-cn.html.有些疑难点记下来. 在导出模块的时候给出的代码是这样的 var http = ...
- 计算出前N项的数据
#include<iostream> #include<algorithm> #include<numeric> using namespace std; ; in ...
- netconf、yang和XML关系
netconf是基于xml的网络配置协议,文档RFC6241有详细介绍. yang是为netconf建模的一种数据建模语言.文档RFC2060详细介绍了yang1.0版本,RFC7950介绍了yang ...
- codeforces 883M. Quadcopter Competition 思路
M. Quadcopter Competition time limit per test 3 seconds memory limit per test 256 megabytes input st ...
- 初窥c++11:lambda函数及其用法
转载于:点击打开链接 为什么需要lambda函数 匿名函数是许多编程语言都支持的概念,有函数体,没有函数名.1958年,lisp首先采用匿名函数,匿名函数最常用的是作为回调函数的值.正因为有这样的需求 ...