Anton and School - 2

题解:

枚举每个左括号作为必选的。

那么方案数就应该是下面的 1 , 然后不断化简, 通过范德蒙恒等式 , 可以将其化为一个组合数。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
int F[N], Finv[N], inv[N];/// F是阶层 Finv是逆元的阶层
void init(){
inv[] = ;
for(int i = ; i < N; i++)
inv[i] = (mod - mod/i) * 1ll * inv[mod % i] % mod;
F[] = Finv[] = ;
for(int i = ; i < N; i++){
F[i] = F[i-] * 1ll * i % mod;
Finv[i] = Finv[i-] * 1ll * inv[i] % mod;
}
}
int comb(int n, int m){ /// C(n,m)
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n-m] % mod * Finv[m] % mod;
}
char s[N];
int l[N], r[N];
int main(){
scanf("%s", s+);
int n = strlen(s+);
for(int i = ; i <= n; ++i){
if(s[i] == '(') l[i]++;
l[i] += l[i-];
}
for(int i = n; i >= ; --i){
if(s[i] == ')') r[i]++;
r[i] += r[i+];
}
LL ans = ;
init();
for(int i = ; i <= n; ++i){
if(s[i] == '('){
ans = (ans + comb(l[i]-+r[i], l[i]))%mod;
}
}
cout << ans << endl;
return ;
}

CodeForces 785 D Anton and School - 2 范德蒙恒等式的更多相关文章

  1. Codeforces 785 D.Anton and School - 2(组合数处理)

    Codeforces 785 D.Anton and School - 2 题目大意:从一串由"(",")"组成的字符串中,找出有多少个子序列满足:序列长度为偶 ...

  2. Codeforces 785 E. Anton and Permutation(分块,树状数组)

    Codeforces 785 E. Anton and Permutation 题目大意:给出n,q.n代表有一个元素从1到n的数组(对应索引1~n),q表示有q个查询.每次查询给出两个数l,r,要求 ...

  3. Codeforces Round #404 (Div. 2) A,B,C,D,E 暴力,暴力,二分,范德蒙恒等式,树状数组+分块

    题目链接:http://codeforces.com/contest/785 A. Anton and Polyhedrons time limit per test 2 seconds memory ...

  4. CF #404 (Div. 2) D. Anton and School - 2 (数论+范德蒙恒等式)

    题意:给你一个由'('和')'组成的字符串,问你有多少个子串,前半部分是由'('组成后半部分由')'组成 思路:枚举这个字符串中的所有'('左括号,它左边的所有'('左括号的个数为num1,它的右边的 ...

  5. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  6. Codeforces 785 D. Anton and School - 2

    题目链接:http://codeforces.com/contest/785/problem/D 我们可以枚举分界点,易知分界点左边和右边分别有多少个左括号和右括号,为了不计算重复我们强制要求选择分界 ...

  7. Codeforces 785 - A/B/C/D/E - (Undone)

    链接:https://codeforces.com/contest/785 A - Anton and Polyhedrons #include<bits/stdc++.h> using ...

  8. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  9. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

随机推荐

  1. CountDownLatch实现多线程并发请求

    package com.test; import java.text.SimpleDateFormat; import java.util.Calendar; import java.util.Dat ...

  2. 夯实Java基础(二)——面向对象之封装

    1.封装介绍 封装封装,见名知意,就是把东西包装隐藏起来,不被外界所看见, 而Java特性封装:是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数 ...

  3. [实践]activemq安全设置 设置admin的用户名和密码

    (1)打开/opt/app/amq/apache-activemq-5.9.0/conf/jetty.xml 找到 将property name为authenticate的属性value=" ...

  4. 测试自动化:java+selenium3 UI自动化(1) - 环境搭建

    1.前言 我大概是在2012年第一次正式接触到自动化测试,那个时候跟随我的团队一起,就当时项目的UI自动化尝试做出了探索. 在我离开那家公司的时候,我们的自动化测试体系仍然难言完美,但是也已经达到了非 ...

  5. Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(集群版)

    上篇文章Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(单机版)讲了在 idea 里以单机的方式启动zookeeper,这篇介绍一下以集群的方式启动. 集群方式启动,才会真正 ...

  6. C语言连接mysql,用GCC编译

    1. main.c文件内容如下 #include <stdlib.h>#include <stdio.h>#include <winsock.h>#include ...

  7. 最大层内元素和----leetcode周赛150_1002

    题目描述: 给你一个二叉树的根节点 root.设根节点位于二叉树的第 1 层,而根节点的子节点位于第 2 层,依此类推. 请你找出层内元素之和 最大 的那几层(可能只有一层)的层号,并返回其中 最小 ...

  8. Ubuntu Server : 自动更新

    Ubuntu(16.04/18.04) 默认会每天自动安装系统的安全更新,但是不会自动安装包的更新.本文梳理 Ubuntu 16.04/18.04 系统的自动更新机制,并介绍如何配置系统自动更新所有的 ...

  9. DotNetCore 3.0 助力 WPF本地化

    概览 随着我们的应用程序越来越受欢迎,我们的下一步将要开发多语言功能.方便越来越多的国家使用我们中国的应用程序, 基于 WPF 本地化,我们很多时候使用的是系统资源文件,可是动态切换本地化,就比较麻烦 ...

  10. var let及const

    es6已经发布很久了,之前只会用var定义变量,学习了let和const后,又学到了一些作用域.JavaScript编译和深拷贝浅拷贝的知识.这章主要来说说这三个定义量的方法: 1.var 在没学习e ...