LOJ#2665 树的计数
题意:给你DFS序和BFS序,求树的期望高度。
解:先分析性质。
考虑到BFS序是分层的,DFS序的子树是一段,那么我们遍历BFS序并在DFS序上标记对应点的话,就会发现BFS序每一层都会把若干棵子树每个都分成若干个小子树,且换层的时候一定会是DFS序上第一个非空位置。
设每个点的期望深度为hi,那么就是要求BFS序最后一个点的h。考虑每个点的深度怎么算。如果当前点不是新一层的开头,那么它的h一定等于他在BFS序前面一个点的深度。如果是开头,那么就要等于它父亲的深度 + 1,我们可以在DFS序上把每个点的子树染色以查明该点的父亲。如果这两种情况都有可能,那么h就是这两种情况的平均数。
考虑什么时候只可能是一种情况。
当这个点在DFS序上的位置前于BFS序上前一个点在DFS序上的位置的时候,当前点一定是新一层的开头。
当这个点在DFS序上的位置后与BFS序上前一个点在DFS序上的位置的时候:如果这个点和BFS上前一个点在DFS序上的位置不相邻,那么这两个点一定在同一层。
相邻的时候,如果当前点在DFS序的前面还有空位,那么一定在同一层。否则考虑这个子树后面还有没有空位,如果有也一定在同一层,因为要换层的话一定要把后面的每个都走一遍。
实现的时候就用线段树维护颜色和区间和。
#include <bits/stdc++.h> const int N = ; int col[N << ], sum[N << ];
int d[N], b[N], pos[N];
double h[N]; inline void pushdown(int o) {
if(!col[o]) return;
col[o << ] = col[o << | ] = col[o];
col[o] = ;
return;
} void add(int p, int l, int r, int o) {
if(l == r) {
sum[o] = ;
return;
}
int mid = (l + r) >> ;
if(p <= mid) add(p, l, mid, o << );
else add(p, mid + , r, o << | );
sum[o] = sum[o << ] + sum[o << | ];
return;
} int getSum(int L, int R, int l, int r, int o) {
if(L <= l && r <= R) return sum[o];
int mid = (l + r) >> , ans = ;
if(L <= mid) ans += getSum(L, R, l, mid, o << );
if(mid < R) ans += getSum(L, R, mid + , r, o << | );
return ans;
} void change(int L, int R, int v, int l, int r, int o) {
if(L <= l && r <= R) {
col[o] = v;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if(L <= mid) change(L, R, v, l, mid, o << );
if(mid < R) change(L, R, v, mid + , r, o << | );
return;
} int ask(int p, int l, int r, int o) {
if(l == r) return col[o];
int mid = (l + r) >> ;
pushdown(o);
if(p <= mid) return ask(p, l, mid, o << );
else return ask(p, mid + , r, o << | );
} int getKth(int k, int l, int r, int o) {
if(l == r) {
return r + (k > sum[o]);
}
int mid = (l + r) >> ;
if(k <= sum[o << ]) {
return getKth(k, l, mid, o << );
}
else {
return getKth(k - sum[o << ], mid + , r, o << | );
}
} int main() { int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &d[i]);
pos[d[i]] = i;
}
for(int i = ; i <= n; i++) {
scanf("%d", &b[i]);
}
/// h[1] = 1
for(int i = ; i <= n; i++) {
/// b[i] in pos[b[i]]
int p = pos[b[i]], lastp = pos[b[i - ]];
add(p, , n, );
int s = getSum(, p, , n, );
int ed = getKth(s + , , n, ) - ;
/// [p, ed]
if(i == ) {
h[b[i]] = ;
}
else if(p == lastp + && s == p && (ed < n ? getSum(ed + , n, , n, ) : ) == n - ed) {
int fr = ask(p, , n, );
if(fr != d[]) h[b[i]] = (h[fr] + + h[b[i - ]]) / ;
else h[b[i]] = h[fr] + ;
}
else if(p < lastp) { /// new line
int fr = ask(p, , n, );
h[b[i]] = h[fr] + ;
}
else {
h[b[i]] = h[b[i - ]];
}
change(p, ed, b[i], , n, );
} printf("%.3f\n", h[b[n]]);
return ;
}
AC代码
LOJ#2665 树的计数的更多相关文章
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- 【BZOJ】【1211】【HNOI2004】树的计数
Prufer序列+组合数学 嗯哼~给定每个点的度数!求树的种数!那么很自然的就想到是用prufer序列啦~(不知道prufer序列的……自己再找找资料吧,这里就不放了,可以去做一下BZOJ1005明明 ...
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- UOJ #122 【NOI2013】 树的计数
题目链接:树的计数 这道题好神啊……正好有人讲了这道题,那么我就写掉吧…… 首先,为了方便考虑,我们可以把节点重标号,使得\(bfs\)序变成\(1,2,3,\dots,n\),那么显然树的深度就是\ ...
随机推荐
- 2014年第五届蓝桥杯javaB组 试题 答案 解析
1.武功秘籍 小明到X山洞探险,捡到一本有破损的武功秘籍(2000多页!当然是伪造的).他注意到:书的第10页和第11页在同一张纸上,但第11页和第12页不在同一张纸上. 小明只想练习该书的第81页到 ...
- .net 笔试面试总结(1)
趁着在放假时候,给大家总结一点笔试面试上的东西,也刚好为年后跳槽做一点小积累. 下面的参考解答只是帮助大家理解,不用背,面试题.笔试题千变万化,不要梦想着把题覆盖了,下面的题是供大家查漏补缺用的,真正 ...
- OPP的三大特征之封装总结
'''封装: 1.什么是封装? 封装是把什么东西装到容器中,再封闭起来 与隐藏有相似之处,但不是单纯的隐藏 官方解释:封装是指对外部隐藏实现细节,并提供简单的使用接口 封装的好处: 1.提高安全性 2 ...
- 我的世界 ParaCraft 结合开源地图 OpenStreetMap 生成3D校园的方法简介
我的世界ParaCraft结合开源地图OpenStreetMap生成3D校园的方法简介 版本1.0 日期2019.2.3 作者Ray (82735589@qq.com) www.TimeGIS.com ...
- java----静态代理
静态代理没啥好说的,直接上代码 package com.yk.aop.staticproxy; import org.junit.jupiter.api.Test; //1.接口 public int ...
- selenium-测试框架搭建(十三)
思路 分离业务代码和测试数据,提高代码可维护性,实现自动化,减少重复劳动. 一个测试框架大概由配置文件,测试数据,测试用例,相关文件(发送邮件等),测试日志,断言和测试报告等模块组成. 结构 以页面为 ...
- win10 桌面设置为远程桌面
查看方法: 1.点击桌面“计算机”,右键,点击属性. 2.在计算机属性系统窗口中点击“远程设置”. 3.在“系统属性”对话框中远程协助勾选“允许远程协助连接这台计算机”. 4.在“远程协助”点击“高级 ...
- 64位Win7下Asp.net项目连接Oracle时报ORA-6413:连线未打开异常
当时小弟碰到这个问题的时候,也找了挺久的回答,但是回答都是模棱两可的说是因为()的问题,但是没有给出具体的解决方案,这里小弟就用一个比较笨的方法来解决这个问题. 第一种:就是使用本地IISWeb服务器 ...
- Linux(CentOS7)下如何配置多个JDK环境变量
一.Linux版本 二.复制粘贴多个JDK出来,如下 cp -R jdk1.7.0_80/ jdk1.7.0_80-2 cp -R jdk1.7.0_80/ jdk1.7.0_80-3 三.配置多个J ...
- json和java对象相互转换
json和java对象相互转换 springboot中json转换默认使用的是jackson包,通过spring-boot-starter-web依赖的 1 在属性上添加注解@JsonFormat(p ...