LOJ#2665 树的计数
题意:给你DFS序和BFS序,求树的期望高度。
解:先分析性质。
考虑到BFS序是分层的,DFS序的子树是一段,那么我们遍历BFS序并在DFS序上标记对应点的话,就会发现BFS序每一层都会把若干棵子树每个都分成若干个小子树,且换层的时候一定会是DFS序上第一个非空位置。
设每个点的期望深度为hi,那么就是要求BFS序最后一个点的h。考虑每个点的深度怎么算。如果当前点不是新一层的开头,那么它的h一定等于他在BFS序前面一个点的深度。如果是开头,那么就要等于它父亲的深度 + 1,我们可以在DFS序上把每个点的子树染色以查明该点的父亲。如果这两种情况都有可能,那么h就是这两种情况的平均数。
考虑什么时候只可能是一种情况。
当这个点在DFS序上的位置前于BFS序上前一个点在DFS序上的位置的时候,当前点一定是新一层的开头。
当这个点在DFS序上的位置后与BFS序上前一个点在DFS序上的位置的时候:如果这个点和BFS上前一个点在DFS序上的位置不相邻,那么这两个点一定在同一层。
相邻的时候,如果当前点在DFS序的前面还有空位,那么一定在同一层。否则考虑这个子树后面还有没有空位,如果有也一定在同一层,因为要换层的话一定要把后面的每个都走一遍。
实现的时候就用线段树维护颜色和区间和。
#include <bits/stdc++.h> const int N = ; int col[N << ], sum[N << ];
int d[N], b[N], pos[N];
double h[N]; inline void pushdown(int o) {
if(!col[o]) return;
col[o << ] = col[o << | ] = col[o];
col[o] = ;
return;
} void add(int p, int l, int r, int o) {
if(l == r) {
sum[o] = ;
return;
}
int mid = (l + r) >> ;
if(p <= mid) add(p, l, mid, o << );
else add(p, mid + , r, o << | );
sum[o] = sum[o << ] + sum[o << | ];
return;
} int getSum(int L, int R, int l, int r, int o) {
if(L <= l && r <= R) return sum[o];
int mid = (l + r) >> , ans = ;
if(L <= mid) ans += getSum(L, R, l, mid, o << );
if(mid < R) ans += getSum(L, R, mid + , r, o << | );
return ans;
} void change(int L, int R, int v, int l, int r, int o) {
if(L <= l && r <= R) {
col[o] = v;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if(L <= mid) change(L, R, v, l, mid, o << );
if(mid < R) change(L, R, v, mid + , r, o << | );
return;
} int ask(int p, int l, int r, int o) {
if(l == r) return col[o];
int mid = (l + r) >> ;
pushdown(o);
if(p <= mid) return ask(p, l, mid, o << );
else return ask(p, mid + , r, o << | );
} int getKth(int k, int l, int r, int o) {
if(l == r) {
return r + (k > sum[o]);
}
int mid = (l + r) >> ;
if(k <= sum[o << ]) {
return getKth(k, l, mid, o << );
}
else {
return getKth(k - sum[o << ], mid + , r, o << | );
}
} int main() { int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &d[i]);
pos[d[i]] = i;
}
for(int i = ; i <= n; i++) {
scanf("%d", &b[i]);
}
/// h[1] = 1
for(int i = ; i <= n; i++) {
/// b[i] in pos[b[i]]
int p = pos[b[i]], lastp = pos[b[i - ]];
add(p, , n, );
int s = getSum(, p, , n, );
int ed = getKth(s + , , n, ) - ;
/// [p, ed]
if(i == ) {
h[b[i]] = ;
}
else if(p == lastp + && s == p && (ed < n ? getSum(ed + , n, , n, ) : ) == n - ed) {
int fr = ask(p, , n, );
if(fr != d[]) h[b[i]] = (h[fr] + + h[b[i - ]]) / ;
else h[b[i]] = h[fr] + ;
}
else if(p < lastp) { /// new line
int fr = ask(p, , n, );
h[b[i]] = h[fr] + ;
}
else {
h[b[i]] = h[b[i - ]];
}
change(p, ed, b[i], , n, );
} printf("%.3f\n", h[b[n]]);
return ;
}
AC代码
LOJ#2665 树的计数的更多相关文章
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- 【BZOJ】【1211】【HNOI2004】树的计数
Prufer序列+组合数学 嗯哼~给定每个点的度数!求树的种数!那么很自然的就想到是用prufer序列啦~(不知道prufer序列的……自己再找找资料吧,这里就不放了,可以去做一下BZOJ1005明明 ...
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- UOJ #122 【NOI2013】 树的计数
题目链接:树的计数 这道题好神啊……正好有人讲了这道题,那么我就写掉吧…… 首先,为了方便考虑,我们可以把节点重标号,使得\(bfs\)序变成\(1,2,3,\dots,n\),那么显然树的深度就是\ ...
随机推荐
- PhP数据库 Mysql dos命令
mysql 这是一个关系型数据库,存在表的概念. 结构 数据库可以存放多张表,每个表可以存放多个字段,每个字段可以存放多个记录. dos命令操作数据库 phpstudy使用终端打开数据库 第一步: 第 ...
- off-canvas:抽屉式页面布局的纯css实现
Off-canvas即抽屉式的侧边导航栏布局,导航栏在大尺寸屏幕的时候可以设置无需隐藏,小尺寸屏幕的时候自动隐藏,并出现.off-canvas-toggle用以打开导航栏,打开导航栏的状态下可以点击非 ...
- WEB前端需要了解的XML相关基础知识
什么是 XML? XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没 ...
- (三) Keras Mnist分类程序以及改用交叉熵对比
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Mnist分 ...
- 华为6.0系统设备最完美激活Xposed框架的经验
对于喜欢玩手机的伙伴而言,经常会使用上Xposed框架及种种功能强大的模块,对于5.0以下的系统版本,只要手机能获得root权限,安装和激活Xposed框架是非常轻松的,但随着系统版本的迭代,5.0以 ...
- linux下mysql配置文件位置
在/usr/share/mysql/ 中找到my.cnf的配置文件,拷贝其中的my-huge.cnf 到 /etc/ 并命名为my.cnf
- 深圳市共创力咨询CEO杨学明的最新演讲:互联网模式下的企业创新管理
2018年11月14日, 深圳市共创力咨询董事长.深圳市汇成研发管理咨询公司董事长杨学明先生受邀参加由深圳图书馆主办,深圳手讯视频承办的“倾听行业之声”2018第二届世界CED智慧大会,此次分享的主题 ...
- C#语言中的修饰符
public:公有访问.不受任何限制. private:私有访问.只限于本类成员访问,子类和实例都不能访问. protected:保护访问.只限于本类和子类访问,实例不能访问. internal:内部 ...
- Windows中查看进程的资源消耗(cpu, Disk,Memory,NetWork)
1.通过Windows Task Manager 的 Performance Tab 可以看到总体的性能消耗情况. 2.如果想看系统中每个进程的资源消耗,可以点击 下面的 Open Resource ...
- Chrome 清除当前网站下的缓存
打开开发者工具(F12),选择 Network--Disable cache 即可.需要清除某网站缓存时 F12 打开开发者工具就会自动清除这个网站的缓存,而不必清除所有网站的缓存了. 如评论中大佬所 ...