bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]
4872: [Shoi2017]分手是祝愿
题意:n个灯开关游戏,按i后i的约数都改变状态。随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略。问期望步数\(\cdot n! \mod 1003\)
50% n=k 送分...从大到小选就行了...实际上送了80分...
这个期望DP没想到不应该啊
\(f[i]\)表示还有i步可以结束的期望步数
f[i+1] = ...
\]
但是k=0就gg了
考虑差分f,或者说\(g[i]\)表示i到i-1步的期望步数
\]
答案就是\(g[最优策略步数]\)啰
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e5+5, P = 100003, mo = P;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, k, a[N];
int mark[N];
ll inv[N], g[N], fac = 1;
void solve() {
int t = 0;
for(int i=n; i>=1; i--) {
int p = a[i];
for(int j=i+i; j<=n; j+=i) if(mark[j]) p ^= 1;
if(p) mark[i] = 1, t++;
}
if(t <= k) {printf("%lld", t * fac %mo); return;}
inv[1] = 1;
for(int i=2; i<=n; i++) inv[i] = (P - P/i) * inv[P%i] %P;
for(int i=1; i<=k; i++) g[i] = 1;
g[n] = 1;
for(int i=n-1; i>k; i--) g[i] = ((n-i) * g[i+1] %mo + n) * inv[i] %mo;
ll ans = 0;
for(int i=1; i<=t; i++) ans += g[i];
printf("%lld", ans * fac %mo);
}
int main() {
freopen("in", "r", stdin);
n=read(); k=read();
for(int i=1; i<=n; i++) a[i] = read(), fac = fac * i %mo;
solve();
}
bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]的更多相关文章
- 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP
[题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...
- BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP
显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...
- bzoj 4872: [Shoi2017]分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- 【bzoj4872】[Shoi2017]分手是祝愿 期望dp
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- P3750 [六省联考2017]分手是祝愿 期望DP
\(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...
- 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP
题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...
- [六省联考2017]分手是祝愿 期望DP
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...
- [六省联考2017]分手是祝愿——期望DP
原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...
随机推荐
- hdu_1036(取整和格式控制)
题意很简单,求平均时间 复习一下如何取整 (int) fl 是直接向下取整 == floor(fl) 向上取整 (int)(fl+1) == ceil(fl) 四舍五入 (int)(fl+0.5 ...
- Linux shell编程命令-Linux基础环境命令学习笔记
1.正则表达式 1)^开始 *前一个字符重复0次以上 + 1次以上 ? 0次或者1次 . 一个任意字符(.*连用) {m,n} m到n次 [0-9][a-z] 任意数字或字母 $结束字符 2)sed和 ...
- 废旧鼠标先别丢,用来学习nRF52832 的QDEC
刚发现nRF52832有一个 QDEC,SDK13.0中还有驱动,但是不太友好. 如果大家有废旧鼠标,建议拆一个编码器下来“学习”.鼠标的一般原理如下: 图一 图中那个SW4 ALPS EC10E ...
- UEP-查询方式总结
public void retrieve() { QueryParamList params = getQueryParam("dataWrap"); //获取页面上的参数,即查询 ...
- css3渐变之线性渐变
css3定义了两种类型的渐变,即线性渐变和径向渐变.这里我要说的是线性渐变. 为了创建一个线性渐变,你必须至少定义两种颜色结点.颜色结点即你想要呈现平稳过渡的颜色.同时,你也可以设置一个起点和一个方向 ...
- HDU 1562 Oil Deposits
题目: The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. G ...
- JavaScript八张思维导图—字符串用法
JS基本概念 JS操作符 JS基本语句 JS数组用法 Date用法 JS字符串用法 JS编程风格 JS编程实践 不知不觉做前端已经五年多了,无论是从最初的jQuery还是现在火热的Angular,Vu ...
- JAVA之JDBC的简单使用(Mysql)
JDBC增删查改 昨天七七八八的关于Mysql的配置 和 基本使用也算是初步解决了,今天 抽空看了JAVA的JDBC(JAVA DATA BASE CONNECTION)我也不知道我全称拼写对对不对
- APP测试时常用adb命令
ADB全称Android Debug Bridge, 是android sdk里的一个工具, 用这个工具可以直接操作管理android模拟器或者真实的andriod设备(手机),故在其实工作可以给我们 ...
- C语言第二次实验报告
1.实验题目 题1:11-7 找鞍点(20 分) 一个矩阵元素的"鞍点"是指该位置上的元素值在该行上最大.在该列上最小. 本题要求编写程序,求一个给定的n阶方阵的鞍点 题2: ...